Appendix D - PROLOG implementation

kw_source(definit, html, "filel.html", [autonom, ascript, descript, mean, term, approach] , "filel.html").
kw_source (agent, ol, "filel.html#elml", [autonom, ascript, descript, mean, sometim, attribut] , "filel.html").
kw_source (agent, html, "file2.html", [characterist, attribut, reactiv, proactiv, model, adapt] , "file2.html").
kw_source (reactiv, ul, "file2.html#elml", [proactiv, model, adapt, autonom, knowledg, collabor] , "file2.html").
kw_source (autonom, ol, "file2.html#elm3", [intellig, degre, machin, margin, top] , "file2.html").

kw_source (interfac, p, "file2.html#elmd4", [interfac, collabor, nana, classif, result, type] , "file2.html").
kw_source(dictionari, p, "file2.html#elm5", [act, behalf] , "file2.html").

kw_source (softwar, html, "file3.html", [interfac, intellig, user, direct, manipul] , "file3.html").
kw_source(intellig, ol, "file3.html#elml", [user, interfac, agent, cooper, simplifi, distribut] , "file3.html").
kw_source (agent, table, "file3.html#elm2", [interfac, user, proactiv, reactiv, task, search] , "file3.html").
kw_source (debat, html, "filed4.html", [mae, user, interfac, ben, adapt, domain] , "filed.html").

(
(
(

kw_source (user, ul, "filed.html#elml", [agent, interfac, adapt, intellig, model, futur] , "filed.html").
kw_source (agent, ul, "filed.html#elm2", [user, domain, interfac, focus, speech, difficult] , "filed.html").
kw_source (foley, html, "../341/foley.html", [norman] , "../341/foley.html").

lowerList ("file4.html", [speech, futur, direct, manipul, design, system]).
lowerList ("file4.html#elml", [design, system, speech, memori, direct]).
lowerList ("filed4.html#elm2", [softwar, disagr, mainli, due, ben]).

href("filel.html", "file2.html", "attributes").
href("filel.html", "file3.html", "why software agents").
href("filel.html", "filed4.html#pattie", "pattie maes").

href ("file2.html", "file3.html", "acts on your behalf").

href ("file3.html", "file4.html", "direct vs interface agents").
href("filed4.html", "file3.html", "software agents ").

href ("filed.html", "../341/foley.html", "according to foley").
name ("filed4.html", "pattie", "pattie").

make_concept :-

kw_source (ConceptName, _ , _ , s)
assert (concept (ConceptName)) ,
fail.

% fail forces backtracking so that every combination is tried

make_concept.
%when everything is tried and the above rule fails, this one succeeds

% HR-1: Hyper references between two knowledge entities somewhere within
% the domain are relations of type has_deeper_ explanation
% between the corresponding concepts.

R

hrl :-
href (From, To, _) ,
kw_source (ConceptdA, _ , From, _ , _) ,
kw_source (ConceptB, _ , To, _ , _) ,
assert(relation(has_deeper_explanation, ConceptA, ConceptB)) ,
fail. % forces backtracking

hrl. % ensure success

o

member is recursively defined and finds out whether an X is in a list.
It is used thoroughly in the following.

E

a0

member (X, [X | Tail]).
member (X, [Head | Tail]) :-
member (X, Tail).

o

The domain is constrained to a list of valid filenames, here exemplified
with three files only. The rule outsideDomain checks for membership in
the domain list.

R

o

domain(["filel.html", "file2.html", "file3.html", "filed4.html"]).
outsideDomain (F) :-

domain (D) ,
not member (F, D).

o0

o

HR-2: External links with destinations outside of the domain
are slightly different from internal ones, and the corresponding
relations should be labelled as external.

o

O

hr2 :-
href (From, To, _) ,
outsideDomain (To) ,
kw_source (Conceptd, _ , From, _ , _) ,
kw_source (ConceptB, _ , To, _ , _) ,
assert(relation(external, ConceptA, ConceptB)),
fail. % forces backtracking

hr2. % ensure success

105

kw_source (DocumentConcept, html, _ , _ , File) ,
kw_source (ElementConcept, _ , , _ 4 File) ,

not DocumentConcept = ElementConcept ,
assert(relation(parent, DocumentConcept, ElementConcept)

fail. % forces backtracking

hr3. % ensure success

% member is recursively defined and finds out whether an X is in a list.

t is used thoroughly in the following.

member (X, [X | Tail]).
member (X, [Head | Tail]) :-
member (X, Tail).

°

hr4 :-
kw_source (ConceptA, _ , _ , CandidateList, _) ,
kw_source(ConceptB, _ , _ , _ , _) ,
not ConceptA = ConceptB , % the two concepts

member (ConceptB, Candidatelist) ,

not relation(parent, ConceptA, ConceptB) , %only consider once

assert (relation(parent, ConceptA, ConceptB)) ,
fail. % forces backtracking

hrd4. % ensure success

removeBidirectional :-
relation(Type, ConceptA, ConceptB) ,
relation (Type, ConceptB, ConceptA) ,
retract (relation(Type, ConceptB, Conceptd)) ,
fail. % forces backtracking

removeBidirectional. % ensure success

should not be equal

$remove one

% HR-5: If two concepts have some joint members from their

% set of candidates, the concepts are synonymous.
%

commonMember (Listl, List2) :-
member (Term, Listl) ,
member (Term, List2).

hr5 :-
kw_source (ConceptA, _ , _ , CandidateLista, _)

kw_source (ConceptB, _ , _ , CandidateListB, _)
commonMember (CandidateListA, CandidateListB) ,
not ConceptA = ConceptB ,

not relation(synonym, ConceptA, ConceptB) ,
assert(relation(synonym, ConceptA, ConceptB))
fail. % forces backtracking

hr5. % ensure success

make_concept :-

kw_source (ConceptName, _ , _ , _ , _) ,
assert (concept (ConceptName)) ,
fail.

% fail forces backtracking so that every combination is tried

make_concept.

%when everything is tried and the above rule fails,

’

’

’

o

o

90 oo

It is used thoroughly in the following.

member (X, [X | Tail]).
member (X, [Head | Tail]) :-
member (X, Tail).

member is recursively defined and finds out whether an X is in a list.

106

this one succeeds

% Lower score terms are listed as PROLOG facts, here illustrated with
% three examples. Note that the lists in lowerList and kw_source
% together constitute all the terms surviving lexical analysis.

[—

lowerList ("filed4.html", [speech, futur, direct, manipul, design, system]).
lowerList ("file4.html#elml", [design, system, speech, memori, direct]).
lowerList ("filed4.html#elm2", [softwar, disagr, mainli, due, ben]).

inLowerList (Term, Location) :-
lowerList (Location, Z) ,
member (Term, Z).

% The domain specific list contains terms that are regarded important,
here exemplified with seven terms only.

domainSpecificList([hci, adapt, iui, user, model, domain, intellig]).

inDsl (Term) :-
domainSpecificList (DSL) ,
member (Term, DSL).

% HR-6: A term in a knowledge source KS_1 which is neither selected as
% concept nor in the upper list of candidates, yet a member of the DSL
% and chosen as concept for another knowledge source KS_2,

% is prerequisite to the concept of the first knowledge source KS_1.

inLowerList (Term, Location) ,
inDsl (Term) ,
kw_source (Concept , _ , Location, _ , _) ,
concept (Term) ,
%does the concept of the source equals the term?

assert(relation(prerequisite, Term, Concept)) ,
%$if so, then make a relation between the two.
fail. % forces backtracking

hr6. % ensure success

There is a path between two nodes if there is an edge from the first
% node to an intermediate node, which again has a path to the destination
% node. This code also adds the nodes to the head of a list.

path(From, To, [To]) :-
href (From, To, _).

path (From, To, [Intermediate|Tail]) :-
href (From, Intermediate, _),
path (Intermediate, To, Tail).

a0

o

This rule asserts prerequisite relations from the intermediate
members of a path to the last node

o0 oo

addToSet ([Head|Tail], ToConcept) :-

kw_source (FromConcept, _ , Head, _ , _) ,
not FromConcept = ToConcept , $write relation if the concepts differ
assert(relation(prerequisite, FromConcept, ToConcept)) ,

addToSet (Tail, ToConcept) , %move down the path

addToSet ([], _). Strivial case

107

% HR-7: In the presence of a relation between two concepts, together with
% an unique, explicitly stated path through interlinked nodes connecting

% the two corresponding knowledge sources, there is a set of prerequisite
% relations between the concepts of each node (but the first one), and

% the destination of the path.

% Note that the procedure removes the original relationship type if

% some prerequisites are found

hr7 :-
relation(Type, ConA, ConB) , %if any relation exists
kw_source(ConA , _ , From, _ , _) , %we go get the
kw_source (ConB , , To, ,) %destinations

path (From, To, Visited) , %is there an explicitly stated path?
addToSet (Visited, ConB) , %add all relations along this path
retract (relation(Type, ConA, ConB)) , %remove original relation
fail. % forces backtracking

hr7. % ensure success

o

o

The rule next (Concept) finds a gap and builds a bridge, that is a list
of concepts that can be visited next. Note that this routine does not
validate the prerequisites of the concepts in the gap.

E

o

deletepossible(Item, _ , []).

deletepossible (Item, [Item|Tail] , Tail).

deletepossible (Item, [Y|Taill , [Y|Tail2]) :-
deletepossible (Item, Tail, Tail2).

insert (X, List, BiggerList) :- %insert is the inverse of delete
delete (X, BiggerList, List).

findGap([] , R, R). %trivial case
findGap(DMList, [Head|Tail], GapList):-
deletepossible (Head, DMList, IntermediatelList) ,
%deletes common members
findGap(Tail, IntermediatelList, GapList).

all(Concept, ListIn, ListOut) :- %go get all neighbours
relation(_ , Concept, Next) ,
not member (Concept, ListIn) ,
all (Concept, [Next|ListIn], ListOut).

all(C, List, List). %trivial case

getNeighbour (Concept, DMList) :- %get neigbours to a concept in DM
all(Concept, [], DMList).

userKnows (Concept, UMList) :- %get concepts known to the user.
all2(Concept, [], UMList). %almost equal to all, except that
$relation in all is the DM relation,
%$and relation i all2 is UM relation.

next (Concept) :-
getNeighboursDM (Concept, DMList) , %list all neighbours from DM
userKnows (Concept, UMList) , % build list of neighb. known to user
findGap (DMList, UMList, GapList) , $%$subtract UM from DM

108

