
6 IMPLEMENTATION AND 
EVALUATION

Up to the present, we have outlined the overall architecture and possibilities of an 
AHS, focusing on the development of Heuristics for adding quality to the process 
of building the domain model. In this chapter we first present an implementation of 
the strategy, demonstrating the resulting concepts and relations based on a small 
document collection. Next, we discuss and evaluate our work, concluding with 
some promising fields of future research. 

6.1 Realising the domain model

Our strategy for conceptualization presumes that the domain documents are being 
parsed for important elements in order to build the domain model. Every term in 
these elements is a candidate concept. Guided by the Heuristics for concepts 
introduced in section 5.2.3, a conceptualizer module associates values with each 
candidate, leaving some with a higher score than others, and finally selects the 
most promising term as the concept. The same process apply at both the document 
and element level. The results from the parsing is passed on to another module for 
further analysis, which includes a merge of concepts and identification of 
relationship types. 

Our HTML parser is written in C though any language would do for the task. The 
analysis is performed by PROLOG. Due to its properties as a language, PROLOG is 
very suitable for performing effective and powerful reasoning using only a few 
lines of programming code. The decision to use the combination of C and
PROLOG is based on a wish for integrating the AHS routines into an existing agent 
based framework written in C. The agents at hand are PROLOG machines that can 
call C routines [Thomassen99]. Furthermore, C and PHP come well along, and 
suggestively, functions from OpenGL can easily be called from a C agent. All 
implementation specific details are attached in Appendix E - Implementation of 
conceptualizer. 

6.1.1 A walk through the conceptualization 
processes

Before parsing, all hyper references in the domain are identified and stored in a 
file, and the values of the Heuristics for finding concepts are initialised. All the 
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documents in the domain are listed in a file of document names, one name for each 
line. The process of analysing the domain is therefore controlled by walking 
through the file line by line while opening the next document and analysing it. 
Since stemming is used throughout the analysis, the DSL is also stemmed to be on 
the safe side. Thereafter, the first document is parsed followed by all its elements 
classified as important, then the second document and its important elements, and 
so forth. Unless otherwise stated, from now on we refer to both documents and 
important elements as knowledge sources. 

According to one of the principles of HCI, it is much easier to agree or disagree 
with some proposal than coming up with something new from scratch. For 
instance, a DSL could be constructed semi-automatically by proposing the highest 
weighted terms from each document, then allowing the author to edit and correct 
the list. The construction should be rather simple since it can basically be 
implemented as a text file of words regarded as being important. 

The Heuristics for finding candidates rely on several methods for operating on the 
knowledge sources in order to incrementally adjust the values of each candidate. 
All sets of temporal or longer term results are written to text files with one term for 
each line, allowing for easy manipulation of appropriate sets in the combination of 
an ADT (abstract data type) List. Regularly used functions include list operations 
for comparison, searching for specific terms, sorting, counting occurrences of the 
elements, reading a file to its internal list representation, and removing duplicate 
members. The step of lexical analysis and removing stopwords has an expensive 
cost and could account for as much as 50% of the computational expense of 
compilation [Frakes+92]. An extremely efficient implementation is to remove 
stopwords as part of the lexical analysis, that is, functions for lexical analysis and 

stopword removal are intertwined through the use of a DFA1. All terms surviving 
this process are given values by counting term frequencies, according to Heuristic 
HC-2, and membership in the DSL is checked for (HC-1), adding the associated 
value to members. Similarly, emphasizers in the knowledge sources are identified 
(HC-3), while meta information is of great importance for documents only (HC-4). 

The links play a dual role. To fresh up from the discussion in the previous chapter, 
terms in hyper reference elements from somewhere in the domain pointing to the 
document being analysed, are likely to be among its strongest candidate concepts. 
Since such hyper reference terms are strong candidates for the corresponding 
destination documents, they are not suitable as candidates for the document 
hosting the link element. In concordance with Heuristics HC-5 and HC-6, the file 
of all identified links in the domain guides the punishment and reward of 
candidates. As mentioned earlier, documents are parsed before its elements, as 
required by Heuristics HC-8 and HC-11, and occurrences of the selected document 
concept in the elements of a document are punished by adding negative values. 

As the parsing makes progress several things happen at different levels. Of 
importance, duplicate combinations of the tuple <tagName, conceptName> are not 

1. A Deterministic Finite Automaton (DFA) object represents words in a network of 
interconnected characters, so that a whole word is found by following paths of linked 
characters.
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allowed for elements nor for documents, so the system rejects such proposals and 
tries to select among the consecutive candidate concepts until successful. The 
sections of the documents are being retagged and the knowledge sources identified 
are stored in individual, uniquely named files, all together constituting a new 
knowledge base. As far as reporting concerns, all candidate concepts are written to 
individual log files, one log file for each document. Additionally, the concepts 
selected are added to another file in a form understandable by PROLOG in order to 
facilitate further analysis. As illustrated in Figure 6–1: the file 
“parsing_results.pro” has information on each knowledge source, like conceptual 

representation, the element type1, an ID for later retrieval from the already 
established knowledge base, and a list of candidates with scores close to that of the 
concept selected. The latter attribute (also referred to as “the upper list of 
candidates”) facilitates evaluation and adjustment of the proposed domain model 
as the system might suggest other candidates if the author is displeased with the 
proposed DM, and, as seen in the previous chapter, they will also play an important 
role when it comes to the identification of certain relationship types. 

Each element originates from a document. The observant reader might wonder 
why document names are listed as well. Even though this information is held by 
the third attribute, or ID, it facilitates the implementation of one of the Heuristics. 

1. Just as element types are labeled with the corresponding tag names, documents are 
labeled as “html”. 

Figure 6–1: Information about the knowledge sources are written to a file in a format 
understandable by PROLOG. For the document concepts, the ID’s appear as filenames only. 

For each element within a document, its ID is composed as follows: 
“filename” + “#elm” + “number”, where the number is increased as new elements are being 
analysed. Note that the concepts are stemmed. Also worth noticing is the uniqueness of the 

combination concept + tag, which agrees to the previous discussion. 
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The reason is that PROLOG is weak on string manipulation, even for a simple task 
like extracting the file name from the ID. 

6.1.2 Seaming up the domain model 

From the file in Figure 6–1 we see that some conceptual descriptions coincide. 
Note that the temporary division of document concepts and element concepts (c.f. 
section 5.1.4) were useful for splitting up the domain knowledge into appropriate 
knowledge sources, and for discussing how to capture the conceptual hierarchy. 
For the final DM, however, this division is superfluous since the conceptual 
hierarchy will be reflected through the relations. Furthermore, the file 
“parser_results.pro” must be kept intact for the future adaptation phase, since it 
holds information on which knowledge sources each concept represents. 
Therefore, listing all the conceptual descriptions as PROLOG facts in a new file 
while removing duplicates, elegantly solves the first part of completing the DM. 
We want a PROLOG representation of the domain knowledge in terms of 
abstracted concepts and how they are related. The left part of Figure 6–2 shows the 
domain model as such a file. To the right, the DM it is visualised as a conceptual 
structure.

From the two illustrations shown by now, we see that one goal to be accomplished 
is to abstract the concepts only, from all the information held by the fact
kw_source, where new facts should be written on the form 

Figure 6–2: The domain model represented in a PROLOG file.
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concept(ConceptName). This task can be implemented straightforward as 
illustrated by the rather simple PROLOG code below: 

Heuristics HR-1 and HR-2 sought to find deeper explanation relationship types, 
doing so through the use of already identified hyper references. Remember that the 
initial step of conceptualization was to file all hyper references of the domain, 
which was then necessary to help the parser to point out concepts. Now this file 
becomes a useful source for the relational Heuristics HR-1 and HR-2. Figure 6–3
illustrates a small sample of links generated from the analysis of a domain.    

As mentioned, the domain was parsed based on a listing of all document filenames. 
The domain is useful when identifying relations, so this file is transformed to a
PROLOG fact using a list. That is, for a domain with e.g. the four files “file1.html”, 
“file2.html”,  “file3.html” and “file4.html”, the corresponding PROLOG fact takes 
on the form:

Table 6–1: PROLOG code for collecting all concepts and writing these as new facts.

%------------------------------------------------------------------------
% This code collects each concept from the kw_source fact, 
% and writes the result as a new fact.

make_concept :-  
     kw_source(ConceptName, _ , _ , _ , _ ) , 
     assert( concept(ConceptName) ) , 
     fail. 
     % fail forces backtracking so that every combination is tried

make_concept. 
     %when everything is tried and the above rule fails, this one succeeds

Figure 6–3: The file based on linkage between the original documents. Note that one link in 
Doc1.html points to a specific section of Doc4.html, which in turn has a link directed to 

somewhere outside the domain (namely to a document debating (“foley”). The destination in 
Doc4.html that is named “pattie” leads to the identification of a name-clause.
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domain([“file1.html”,“file2.html”,“file3.html” ,“file4.html”]).

a task which can be accomplished e.g. by the C-routines. Furthermore, by 
combining facts about hyper references with the facts on the knowledge sources,
PROLOG routines can find out which sections are related and link the 
corresponding concepts. The built-in predicates assert and retract makes it 
possible to update the program with new clauses or delete clauses during program 
execution, another advantage with the PROLOG language. In other words, as the 
program precedes, it can modify itself. This convenience is used thoroughly in the 
implementation of the Heuristics, and was also used when making concepts out of 
the kw_source fact (c.f. Table 6–1). The code for the first two Heuristics are 
illustrated below. 

Table 6–2: Heuristics HR-1 and HR-2 expressed in PROLOG.

%------------------------------------------------------------------------
% HR-1: Hyper references between two knowledge sources somewhere within
% the domain are also relations of type has_deeper_explanation between the
% corresponding concepts.  

hr1 :-  
     href(From, To, _ ) , 
     kw_source(ConceptA, _ , From, _ , _ ) ,
     kw_source(ConceptB, _ , To, _ , _ ) ,
     assert( relation(has_deeper_explanation, ConceptA, ConceptB) ) ,
     fail.    % forces backtracking 

hr1. % ensure success

%------------------------------------------------------------------------
% member is recursively defined and finds out whether an X is in a list.

member(X, [X | Tail]).  
member(X, [Head | Tail]) :-
     member(X, Tail).
     
%------------------------------------------------------------------------
% The domain is constrained to a list of valid filenames, here exemplified
% with four files only. The rule outsideDomain checks for membership in 
% the domain list.

domain( [“file1.html”, “file2.html”, “file3.html”, “file4.html”] ).

outsideDomain(F) :-
     domain(D) , 
     not member(F, D).

%------------------------------------------------------------------------
% HR-2: External links with destinations outside of the domain
% are slightly different from internal ones, and the corresponding 
% relations between such knowledge sources should be labelled as external. 

hr2 :-  
     href(From, To, _ ) , 
     outsideDomain(To) ,
     kw_source(ConceptA, _ , From, _ , _ ) ,
     kw_source(ConceptB, _ , To, _ , _ ) ,
     assert( relation(external, ConceptA, ConceptB) ),
     fail.    % forces backtracking 

hr2. % ensure success
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As an example, the task for HR-1 is to find concepts that are linked based on 
document linkage and we therefore start with establishing the source (the variable 
From) and the destination (the variable To) of each link by searching the href
facts listed in Figure 6–3. Then we need the document concept from the source of 
the link and the document concept from the link destination, so we pick only these 
from the kw_source facts listed in Figure 6–1, elegantly ignoring the element 
types and the list of candidates using the PROLOG understandable underscore 
character as argument. Note that due to the form of the arguments of href and the 
form of the ID argument from kw_source, we don’t have to account for element 
types, i.e. only document concepts will be selected. The set of Heuristic for the 
conceptual hierarchy can also be easily implemented in PROLOG. Before finishing 
the rule for HR-3, we note that when the filenames equal for two concepts, they 
denote the same document, and the element type “html” denotes the document 
concept. 

Table 6–3: Implementing the Heuristics for finding parent and synonym relationship types.

%------------------------------------------------------------------------
% HR-3: All element concepts found within a document are children 
% of the document concept.

hr3 :- 
     kw_source(DocumentConcept, html, _ , _ , File) ,
     kw_source(ElementConcept, _ , _ , _ , File) ,
     not DocumentConcept = ElementConcept ,
     assert( relation(parent, DocumentConcept, ElementConcept) ) ,
     fail.    % forces backtracking 

hr3. % ensure success
     
%------------------------------------------------------------------------
% HR-4: There is a parent relation if a member from a set of 
% candidate concepts equals an already found concept.

hr4 :- 
     kw_source(ConceptA, _ , _ , CandidateList, _ ) ,
     kw_source(ConceptB, _ , _ , _ , _ ) ,
     not ConceptA = ConceptB ,   %  the two concepts should not be equal
     member(ConceptB, CandidateList) ,
     not relation(parent, ConceptA, ConceptB) , %only consider once
     assert( relation(parent, ConceptA, ConceptB) ) ,
     fail.    % forces backtracking 

hr4. % ensure success

%------------------------------------------------------------------------
% HR-5: If two concepts have some joint members from their 
% set of candidates, the concepts are synonymous.

commonMember(List1, List2) :-
     member(Term, List1) , 
     member(Term, List2).

hr5 :- 
     kw_source(ConceptA, _ , _ , CandidateListA, _ ) ,
     kw_source(ConceptB, _ , _ , CandidateListB, _ ) ,
     commonMember(CandidateListA, CandidateListB) ,
     not ConceptA = ConceptB ,
     not relation(synonym, ConceptA, ConceptB) , %only consider once
     assert( relation(synonym, ConceptA, ConceptB) ) ,
     fail.    % forces backtracking 

hr5. % ensure success
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The last two Heuristics will aim at finding prerequisite relations. Similar to 
converting the file with the domain document listing, we also assume that the C-
routines produces a PROLOG understandable version of the DSL. In order to make 
Heuristic HR-6 work, we need information on the terms that is not in the upper list 
of candidate concepts, in other words those terms that are not present in the last 
argument of clauses named kw_source. Remember from the previous discussion 
that such a list exists for each element, namely in the log file for each document. 
Assuming that the C-routines also convert this list to PROLOG facts on the form 
lowerList(ID, ListOfLowerScoreTerms), we are set to implement this 
Heuristic. 

The PROLOG code of Heuristic HR-6 seems more complex than those of the 
previous rules. Will it generate the prerequisite relation correctly? Refresh on the 
situation of Figure 5–9 (which illustrated Heuristic HR-6) where a regular term 
klm, which also occurred in the DSL, was only briefly mentioned in a document. 
Since klm already had been identified as a concept somewhere else, and goms was 
voted as concept of the document in which klm lived as a regular term only, we 
claimed klm to be prerequisite to goms. In order to explain the implementation, we 

Table 6–4: “Prologging” the first prerequisite relationship type.

%------------------------------------------------------------------------
% Lower score terms are listed as PROLOG facts, here illustrated with 
% three examples. Note that the lists in lowerList and kw_source
% together constitute all the terms surviving lexical analysis.

lowerList("file4.html", [speech, futur, direct, manipu, design, system]).
lowerList("file4.html#elm1", [design, system, speech, memori, direct]).
lowerList("file4.html#elm2", [softwar, disagr, mainli, due, ben]).

inLowerList(Term, Location) :-
     lowerList(Location, Z) , 
     member(Term, Z).

%------------------------------------------------------------------------
% The domain specific list contains terms that are regarded important, 
% here exemplified with seven terms only. 

domainSpecificList( [hci, adapt, iui, user, model, domain, intellig] ).

inDsl(Term) :-
     domainSpecificList(DSL) , 
     member(Term, DSL).

%------------------------------------------------------------------------
% HR-6: A term in a knowledge source KS_1 which is neither selected as 
% concept nor in the upper list of candidates, yet a member of the DSL 
% and chosen as concept for another knowledge source KS_2, 
% is prerequisite to the concept of the first knowledge source KS_1.

hr6 :- 
     inLowerList(Term, Location) , 
     inDsl(Term) ,
     kw_source(Concept , _ , Location, _ , _ ) , 
     concept(Term) ,
         %does the concept of the source equals the term?
     assert( relation(prerequisite, Term, Concept) ) ,
         %if so, then make a relation between the two.
     fail.    % forces backtracking 

hr6. % ensure success
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illustrate by including only the facts necessary. Note that the content of Table 6–5
corresponds to the klm/goms situation, where the two clauses concept(goms). 
and concept(klm). were obtained by calling the previously stated rule
make_concept.   

To start, we ask hr6. in order to identify the prerequisite relations which 
conditions to the Heuristic. The first two goals tries to satisfy membership in the 
lowerList and the domainSpecificList, using the rules from Table 6–4. For 
successful bindings to the variable Term (in our case the second member of the 
lower list, that is klm), the Location variable is further used in order to identify 
the concept of the knowledge source. Next, we must ask whether the term found is 
also a concept, simply by posing the question concept(Term). Since there is 
such a clause for the present term, namely concept(klm). the question 
succeeds, and a prerequisite relation can be inserted as part of the knowledge 
database. Finally, in order to validate, we ask PROLOG the question
relation(prerequisite, A, B). to check whether any relations were 
found. The result is that the variables A and B are bound to klm and goms
respectively, in other words PROLOG found the newly inserted fact
relation(prerequisite, klm, goms).   

The last Heuristic HR-7 assumes there is a path between two related concepts. 
Thus, its solution involves the traversal of several paths. We therefore start by 
defining the code for how to find a path, and doing so requires the use of edges, (a 
path is made of edges between the nodes). Note that we already have the edges 
established from the href facts. If a path exists along with an already discovered 
relation, the procedure addToSet starts to extend the database with new 
prerequisite relations. Finally, the original relation is removed. The code for all this 

Table 6–5: A small portion of the knowledge on two documents as seen from PROLOG.

kw_source(goms, ul, "file5.html", [operator, mhp, analysis], "file5.html").
kw_source(klm, p, "file7.html", [keystroke, button, time], "file7.html").

lowerList("file5.html", [mouse, klm, movement]).

domainSpecificList( [hci, foley, norman, goms, klm, mhp, gestalt] ).

concept(goms).
concept(klm).
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is summarised below and will not be further explained. Again, notice the compact 
form due to the properties of the PROLOG language.  

By now, we have seen that all concepts and relations can be found using PROLOG. 
Together, they provide the basis for completing the domain model. Once this 
information is merged into one file (e.g. “dm.pro” used in Figure 6–2), this file 
essentially constitute the domain model, that is, one single file can represent the 
domain knowledge. The Heuristics work independently of each other, and hence 
there is also a chance that some concepts are linked with more than one relation. In 
particular, some Heuristics produce bi-directional relations. For instance, Heuristic 
HR-1 produces the relations 

relation(has_deeper_explanation, software, debat).
relation(has_deeper_explanation, debat, software).

Table 6–6: Paths are the basis for finding more prerequisites.

%------------------------------------------------------------------------
% There is a path between two nodes if there is an edge from the first
% node to an intermediate node, which again has a path to the destination
% node. This code also adds the nodes to the head of a list.

path(From, To, [To] ) :- 
     href(From, To, _ ).

path(From, To, [Intermediate|Tail] ) :- 
     href(From, Intermediate, _ ), %adds to head of list
     path(Intermediate, To, Tail).  

%------------------------------------------------------------------------
% This rule asserts prerequisite relations from the intermediate
% members of a path to the last node

addToSet([Head|Tail], ToConcept) :-
     kw_source(FromConcept, _ , Head, _ , _ ) , 
     not FromConcept = ToConcept ,  %write relation if the concepts differ
     assert( relation(prerequisite, FromConcept, ToConcept) ) , 
     addToSet(Tail, ToConcept) ,  %move down the path

addToSet([], _). %trivial case

%------------------------------------------------------------------------
% HR-7: In the presence of a relation between two concepts, together with
% an unique, explicitly stated path of documents connecting the two 
% corresponding knowledge sources, there is a set of prerequisite
% relations between the concepts of each document (but the first one), 
% and the destination of the path.
% Note that the procedure removes the original relationship type if 
% some prerequisites are found

hr7 :- 
     relation(Type, ConA, ConB) , %if any relation exists
     kw_source(ConA , _ , From, _ , _ ) , %we go get the
     kw_source(ConB , _ , To, _ ,  _ ) ,   %destinations
     path(From, To, Visited) , %is there an explicitly stated path?
     addToSet(Visited, ConB) , %add all relations along this path
     retract( relation(Type, ConA, ConB) ) , %remove original relation
     fail.    % forces backtracking 

hr7. % ensure success
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In order to fix this problem, one of the superfluous clauses can be retracted from 
the PROLOG database. The rule removeBidirectional in Table 6–7 shows 
how. 

A well known principle of design is that human beings find it easier to overrule 
errors from a proposal than coming up with one themselves from scratch. As noted, 
someone skilled in the domain should revise the DM in order to secure that only 
appropriate concepts and relations remain. We suggest a graphical visualization in 
the form of a conceptual network, though other presentational forms are possible. 
Note that the number of concepts might get out of hand. Therefore the system 
should provide means for “switching off” some concepts and hence leaving only 
part of DM visible. Such a demand can be fulfilled simply through hiding the 
subordinate concepts of the parent relations, that is zooming in or out until the 
desired level of detail is achieved (when using a graphical interface). In a similar 
fashion, if the author prefers a pruned network, the system should offer to 
permanently delete all concepts and relations not visible. Moreover, for the human 
reviser, the file “parsing_results.pro” proves to be useful in many ways. As an 
example, its list attribute, whose members are ranked by value, will facilitate tasks 
like renaming since new concepts can be proposed as substitutes for those 
incorrectly suggested (by the system) in the first place. 

6.2 Possibilities for the AHS

In the following we briefly sketch an example of how a simple user model and 
adaptation model might look, thus substantiating the choice of a PROLOG based 
implementation. We focus on the representation of the conceptual knowledge and 
generic user information and preferences. 

6.2.1 Picturing a simple user model

As outlined in the previous chapter, UM must hold information on the user’s level 
of conceptual knowledge. A simple scheme is to save information on which 
concepts the user already has knowledge and at what level. The user model should 
be incrementally built so that it at any time can provide the adaptive hypertext 
system with information on what the user knows. Since one concept can represent 
many different knowledge sources, it is important that the user model also records 
which knowledge sources have been presented for each concept. Continuing with 

Table 6–7: Some clauses to clean up bi-directional relations

removeBidirectional :- 
     relation(Type, ConceptA, ConceptB) ,
     relation(Type, ConceptB, ConceptA) , 
     retract( relation(Type, ConceptB, ConceptA) ) ,  
          %removes the latter bidirectional relation
     fail.    % forces backtracking 

removeBidirectional. % ensure success
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PROLOG notation, we use a fact knowledge which has attributes on the concept, 
along with a list of knowledge sources that have been shown for each concept, and 
finally a state indicating which knowledge level the user has on each concept. For 
instance, the state of the concept “debat” is set to deeper since the user has 
accessed the external resource conceptualised as “foley” (c.f Figure 6–2). Since we 
regard UM as an overlay model of DM, it seems natural to also include the 
corresponding relations as new concepts are learned, that is, relations to neighbour 
concepts. Why embed relations in the user model? There are at least one reason. 
When a concept is learned and its neighbours are not, the knowledge gap should be 
bridged, and if the relations are kept in the domain model only, the implementation 
of the adaptation rules becomes cumbersome. Figure 6–4 shows how the file 

“um.pro” represents a simple user model1. Note that due to the uniqueness of the 
tuple <tagName, conceptName>, the information in the tag list can be either in 
terms of the ID or as the tag name (we prefer using the ID, in case the author, 
despite warnings from the system, overrules the recommendations and assigns the 
same concept for two equal elements). 

A user model should present information according to the needs and preferences of 
each user with regard to presentational form and learning abilities. Thus, by 
including some generic information on the learning styles and skills of each user in 
UM, the system is not constrained to a selection among the concepts not yet 
learned. Along with unknown concepts, also the preferences of each user can 
influence the adaptive commitments, so that presentational form and degree of 
difficulty can be further varied. 

Figure 6–4: A simple user model representing user knowledge at various levels. Note that only 
relations to neighbour concepts of the concepts already learned, are included in UM.

1. Possible extensions include e.g. the time spent on each node and interaction history.
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From the clauses 

learning_style( [graphical, philosophical] ).
capability_level(intermediate).

we see that the user “Lady Ada Hyper” prefers the system to generate 
visualizations if possible, a task that can easily be accomplished simply by asking 
for images and tables of the concept being debated. Remember that this 
information can be found from the attribute element-type in the kw_source 
facts. Likewise, the system has somehow inferred the capability of the user to be
intermediate. It would therefore e.g. present easier concepts before the more 
difficult ones, but still challenge the user on more difficult subjects, thus aiming at 
improving the user knowledge without exaggerating. 

6.2.2 Adaptation rules 

We believe that the implementation of DM and UM in terms of facts has made a 
powerful foundation for the adaptive phase, and opened for various and flexible 
adaptive presentations, which can be fairly quickly generated by means of
PROLOG rules. According to the introductory part on adaptive systems in section 
4.5 “Planning an adaptive hypertext system”, page 29, the actions or tasks of an 
adaptive hypertext system are controlled by the adaptive engine operating on an 
adaptation model. In accordance with our work so far, a task would lead the 
adaptive engine to execute a query, and the rules in the adaptation model would 
ensure that the correct action can be executed. Three independent tasks to illustrate 
example rules are proposed in Table 6–8. The tasks will be explained in the 
following. Note that the clauses of the last rule are explained in detail after 
discussing the first two rules.  

Table 6–8: Examples of how easily powerful adaptation rules can be written in PROLOG.

Description of 
task

Example of AE 
call

Rule that fires in AM

1. Provide 
graphical 
information about 
a concept to the 
user.

?- show(agent,img). show(Concept, ElmType) :- 
  kw_source(Concept, ElmType, 
            FileID, _ , _ ) ,  
  display(FileID).

2. Based on a 
concept in DM, 
visualise a sub-
network of 
relations and 
neighbour 
concepts not yet 
visited.

?- visualise(user). visualise(Concept) :- 
  concept(Concept) , 
  relation(Type, Concept, Neighbour) ,
  draw(Concept, Neighbour, Type) ,
  fail. %get all neighbours
visualise(Concept). %ensure success

3. Propose new 
concepts to be 
presented to the 
user based on the 
gap close to a 
given concept in 
the user model

?- next(softwar). next(Concept) :- 
  getNeighboursDM(Concept, DMList) ,   
  userKnows(Concept, UMList) , 
  findGap(DMList, UMList, GapList).
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The first task listed concerns to embed graphical information on a concept in the 
adaptive document being presented to the user. It assumes the parser found exactly 
that concept for an image element during parsing the documents. If so, the image to 
be presented is contained as HTML code within the knowledge base in a small file 
whose reference is kept in the third attribute of kw_source, so the solution is 
simple: Query the Adaptive Engine to display the correct fileID if the associated 
concept and the correct type proves to be true for a knowledge source. Note that we 
assume that the rule display(FileID) exists without focusing on its 
implementation. Somehow, it should return the fileID to the system for 
generation of the adaptive document to be presented. One way to do this is for 
display to write include-sentences to a file “includes.php”, which e.g. a PHP script 
traverses and uses further for generation of the final documents. Note this is very 
simple for PHP since it can tailor many different documents by simply including 
their filenames. 

The second task provides a visualization of the nearby network of a concept upon 
request. Note that whereas the information is provided by simple PROLOG clauses, 
the actual routines for drawing might be more complex and typically performed by 
a routine written in another programming language, typically OpenGL. As noted, 
one reason for choosing PROLOG and C is that the two can communicate within 
an already existing agent based framework, and OpenGL routines can be called 
from C. 

Before considering the third task, we recall that the goal of adaptation is to satisfy 
the user with respect to knowledge, and in order to do so, a plan for which concepts 
to present next and how to present them, is needed. There are various strategies for 
filling up the user model, each leading to different adaptation rules. One strategy is 
to search the domain model in a breadth first manner and introduce all concepts 
briefly before focusing on increasing the user understanding of each concept. 
Cycling through the domain model in order to cover up incomplete user knowledge 
would gradually perfect the user model. More likely than benefiting from many 
walk-throughs, the user could experience all the jumping and revisiting to be 
annoyingly inefficient and loose track of the knowledge to be learned. The 
opposite strategy follows a depth first like search through the domain, aiming at 
fully describing each concept in one operation. A problem with finishing off each 
concept before regarding new ones is that the user could miss sight of the greater 
picture. 

Another strategy for guiding the selection process is based on the relations 
identified so far. Using relations when searching for new pieces of knowledge 
includes several subordinate tasks to be accomplished. Remember that the gap of 
knowledge in the user model consists of unrelated areas in the user model with 
corresponding related areas in the domain model. The task then comes to bridge 
the gap of knowledge using the relations of DM. Note from the below illustration 
that the concept softwar in DM is related to the concepts intellig, agent,
definit and debat, whereas the user has learned the concepts software and
agent only, as indicated with empty circles. In other words, there is a gap close to 
the concept software which should be bridged, and the concepts intellig 
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and definit constitute the building blocks to the piece of engineering work at 
hand. 

The strategy is to let lists represent both UM and DM, and show all members from 
UM not also in DM. The first step is to identify a list of neighbours from DM close 
to a concept, doing so by calling the rule getNeighbours(Concept, 
DMList). and now DMList holds all nodes close to the concept. Similarily, a 
list of user model neighbours to the concept must be found. The next step of the 
strategy is to use the rule findGap(DMList, UMList, GapList). to subtract 
the concepts of the user model from the members of the domain model. This 
operation is basically a process of deleting every member of UMList from 
DMList, resulting in another list GapList holding the concepts to be displayed 
to the user. Using our example,  DMList initially looks like this:

[agent, intellig, definit, debat] 

and the UMList contains

[agent, debat]

so GapList would after the findgap rule is run, yield

[intellig, definit]

Note that the system should also validate whether other concepts are required to be 
known before displaying the members of GapList, placing possible prerequisites 
along with the gap concepts found in a final list, which should then be traversed 

Figure 6–5: The gap in the user model. 
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and displayed to the user. Table 6–9 sums up the rules needed for bridging gaps, 
but does not embed the rules needed to validate prerequisites.  

6.3 Evaluation

The goal of the conceptualizer module was to abstract the contents of documents 
and the sections as good as possible. Rules were then used to complete DM with 
relations between the appropriate concepts. Fine, but are the results reliable? How 
can we justify the actions taken? What if the structure of a collection of documents 
deviate from the assumptions of some Heuristics? This section discusses the 
influence of the commitments made. 

6.3.1 Optimizing and justifying the performance 

In section 5.2.4 we suggested that it is possible to experiment with the total 
outcome of the conceptualization process by varying the values associated with 
each Heuristic. The candidate concepts are terms, where the one with the highest 

Table 6–9: Examples of adaptation rules written in PROLOG.

%------------------------------------------------------------------------
% The rule next(Concept) finds a gap and builds a bridge, that is a list  
% of concepts that can be visited next. Note that this routine does not 
% validate the prerequisites of the concepts in the gap. 

deletepossible(Item, _ , [] ).
deletepossible(Item, [Item|Tail] , Tail).
deletepossible(Item, [Y|Tail] , [Y|Tail2] ) :- 
     deletepossible(Item, Tail, Tail2).

insert(X, List, BiggerList) :-    %insert is the inverse of delete
     delete(X, BiggerList, List).

findGap( [] , R, R).  %trivial case
findGap( DMList, [Head|Tail], GapList):-
     deletepossible(Head, DMList, IntermediateList) ,  
             %deletes common members
     findGap(Tail, IntermediateList, GapList).

all(Concept, ListIn, ListOut) :-   %go get all neighbours
     relation( _ , Concept, Next) ,
     not member(Concept, ListIn) , 
     all(Concept, [Next|ListIn], ListOut).
all(C, List, List). %trivial case

getNeighbour(Concept, DMList) :-  %get neigbours to a concept in DM
     all(Concept, [], DMList).

userKnows(Concept, UMList) :-    %get concepts known to the user. 
     all2(Concept, [], UMList).  %almost equal to all, except that 
                                 %relation in all is the DM relation, 
                                 %and relation i all2 is UM relation.

next(Concept) :- 
     getNeighboursDM(Concept, DMList) ,   %list all neighbours from DM
     userKnows(Concept, UMList) ,  % build list of neighb. known to user
     findGap(DMList, UMList, GapList) ,  %subtract UM from DM
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value after all Heuristics are performed, is selected as concept. For every term ti an 
Heuristic can either apply or not, indicated in Table 6–10 with “Yes” and “No”, 
respectively. The columns indicates which of the Heuristics do fire for each term. 
Based on some few possible combinations, this section tries to draw some 
conclusions and apply suitable values for an optimal combination of the values 
donated from each Heuristic. Note that HC-5 is implemented in two portions in 
order to account for its dual nature while Heuristics HC-7, HC-9, HC-10 and HC-
11 are left out since they mainly deal with issues like the level of abstraction, 
sequence of analysis etc.   

For instance, the term t1 does not appear in the DSL, nor in any important element, 
so the only Heuristic that strikes, is Heuristic HC-2, as shown in its column. We 
make several notes from the above combinations:

1. All candidates have a term frequency (HC-2), but the number will vary from one 
and up. In the worst case, no Heuristics but the second one proves correct, as for 
t1. 

2. A term might well occur both in the DSL and in outgoing links, as illustrated with 
t2.

3. There are terms like t3 that occur both in outgoing and incoming links (HC-5b 
and HC-6) at the same time. With incoming links, we think of links from 
elsewhere pointing to a specific section hosting the term. 

4. For an element, all Heuristics but the last one suggests assigning positive values 
to the candidate t4.

Instead of testing empirically which combination of values yield the better results, 
we try to analyse the points observed above. From the first we conclude that the 
values must agree with the term frequencies so that they can affect the total 
outcome. The second point reveals a problem. Outgoing links are subject for 
punishment (negative value) whereas DSL members obviously should yield a high, 
positive value. Which Heuristic should veto? Since the DSL apply for all 
documents, we infer that HC-5b should overrule HC-1. The third case concerns 
instances where a candidate is regarded likely to be the concept of another 
document and the present one at the same time, due to membership in hyper 

Table 6–10: The outcome of a term is determined by the total score, which is due to the effect 
from each Heuristic. Some of the possible combinations are listed in the columns. 

Heuristic t1 t2 t3 t4

HC-1 (Domain specific list) No Yes No Yes

HC-2 (Term frequency) Yes Yes Yes Yes

HC-3 (Emphasizers) No No No Yes

HC-4 (Meta and title) No No No No

HC-5a (Occurrences in different elements) No No No No

HC-5b (Punish outgoing links) No Yes Yes No

HC-6 (Incoming links pointing here?) No No Yes Yes

HC-8 (Punish document concept) No No No Yes
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references. In order to resolve this conflict, we note that since links are only 
assumed, not for certain, to be descriptive of their targets, the sum of the two 
should neutralize each other. Finally, even though the first Heuristics seem to 
assign plenty of positive values for an element, the same candidate is already 
chosen as the document concept. It should therefore not be selected again as 
concept for any element in the document. It is necessary for HC-8 to have a 
negative value able to beat the sum of the positively minded Heuristics HC-1, HC-
3 and HC-6, also accounting for relatively high term frequencies. 

Almost like solving a mathematical equation, appropriate values can be set. Note a 
little trial and error will do in order to find values that satisfy all of the above 
demands. As one solution, Figure 6–6 reveals how the results (the kw_source 
facts) of an optimal set of Heuristics (the header section) differ from the setup used 
for the other examples of this chapter, thus outlining the importance of committing 
to appropriate values. Note that this is favourable rather than a limitation for the 
system since it allows for a variation of proposed models made by the system. 
Additionally the author can decide which Heuristics to apply or omit, the latter 
being fruitful in case a collection of documents uses some tags for other purposes 
than outlined in this thesis. 

By leaving Heuristic HC-1 with a value of zero, i.e. neglecting the DSL, the final 
DM would again turn out different. Note, however, that in the absence of a DSL, 
both the conceptualization and the identification of the prerequisite relationship 
type would suffer. In a similar fashion, we may expect the granularity of the DSL 
regarding content to affect the grand total. Therefore both the DSL and the values 

Figure 6–6: The values should be optimal in accordance with
 the observations listed in Table 6–10. Note that these values result in different 

knowledge sources than the values used in Figure 6–1. Hence, other 
concepts and relations are produced for the final domain model.
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of the Heuristics can be regarded as tools for which we can experiment on the final 
outcome. 

6.3.2 An ocean of relations

The code for the relations can very easily be tested using any PROLOG 
environment. For the four sample documents listed in appendix C (which is also 
the basis for most of the screen-shots from this chapter), the results are clear: quite 
a lot of relations were found, especially due to the parent- and synonym 
contributions:

• 4 instances of the has_deeper_explanation relationship type were found. 
• 1 instance of the external relationship type was found.
• 21 parent relations were found, some duplicates and bi-directional occurrences 

were removed.
• 23 synonym relations were found. 
• 0 prerequisite relations were found. 

Note that even though zero prerequisites were found for the four documents, we 
believe that the rules of Heuristics HR-6 and HR-7 are promising. During testing, 
the rules correctly caught the prerequisite relationship as outlined in Figure 5–9
and Figure 5–10. Anyway, the figures are scary. Altogether 69 relations were 
found. In comparison, only 11 unique concepts were found, which means that on 
the average each concept has more than 6 relations. Of course these numbers may 
differ on larger collections. Another important factor is the construction of the 
sample documents. More profound testing and possible revision of the rules is 
needed, but beyond the scope of this thesis. Questionable, therefore, how else can 
we secure that the system performs tolerably well given the proposed framework? 
Remember that the author has been quite silent all the way through, except when 
creating the DSL and pushing some buttons in order to start the processes of 
building the domain model. Let us therefore close up with putting a load on the 
author. 

6.3.3 Document concepts vs. element concepts

An early commitment as part of the process towards a domain model, was to 
separate document concepts from element concepts. The decision was based on the 
observation that documents have a context superior to its sections and other 
subordinate documents. Indeed, the separation gave birth to the three different sets 
of Heuristics for conceptualization, and later on proved convenient for the 
identification of the parent relationship type. 

As a side-effect, the separation also produced knowledge sources of different 
granularity. First, the original documents were preserved and conceptualised with 
the second attribute set to html, as exemplified in the kw_source fact

kw_source(softwar, html, “file3.html”,  
                  [interfac, intellig, user, direct, manipul], “file3.html”).
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but also the elements of each document were written to individual smaller files, 
like in

kw_source(dictionari, p, “file2.html#elm5”, [act, behalf] , “file2.html”).

From the latter example we see that both the ID and the element type p indicates 
that this knowledge source originally was part of another document. 

Is it useful to preserve both knowledge sources in the new knowledge base? One 
goal of adaptation is to tailor new documents that differ from the original ones, if 
more suitable for the user. The issue on document concepts versus element 
concepts are important as they are an essential part of the foundation for the work. 
We believed the system would benefit from this separation, but another view is that 
the resulting domain model actually will be limited due to the choice. The 
separation could in the worst case preserve the original hierarchy and structure so 
much that the resulting domain model will not capture anything but the original 
link structure. On the other hand, as indicated in Figure 6–7 there are two chooses 
for how to view the present knowledge base: 

Preserving original document structure along with an identification of elements, 
are useful as it provides flexibility and the choice to suddenly “turn off” the 
adaptive guidance provided from the system. The other view is that of the left side 
from the figure, indicating that only the knowledge sources stemming from 
element concepts should be regarded when generating adaptive documents. Note 
that in this case the document concepts are still necessary for the identification of 
the parent relations. We conclude that more empirical research is needed in order to 
evaluate the positive and negative consequences of the separation of document 
concepts and element concepts, along with the possibilities for adaptation.  

Figure 6–7: The original domain consists of documents. After the conceptualization, a 
knowledge base consisting of documents and elements (to the left) are the result. Another 
view is to regard the knowledge sources stemming from the elements only (to the right). 
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6.3.4 Clean up the mess before the guests pay you 
a visit

According to Zibell, Klare’s notion of “useful information” is still useful for web 
designers today, almost 40 years later [Zibell00]. For traditional systems, 
knowledge of the user’s knowledge level would help the author to suggest the 
correct depth of concepts and organization of content. The resulting domain will be 
static. For an adaptive hypertext system, the dynamic organization depends upon 
how well the DM can be constructed. Starting with the DSL construction, the 
following processes of analysis, element division and generation of relations are up 
to the system, with a resulting domain model as the gift to the author. As seen, the 
number of relations will probably get out of hand, but this does not mean that those 
found are not useful for the author. Obviously, the task of removing incorrect or 
unwanted relations and/or concepts, are a task a lot more pleasant for the author, 
than creating an entire domain model from scratch. Additionally, recall that all the 
important elements are sorted out of their original files and saved in a knowledge 
base, with the references kept intact in the kw_source facts. In other words, the 
present prototype of the system will indeed be expected to help the author in 
preparing a static domain for dynamic, adaptive presentations.   

Due to the possible imperfect outcome of the proposed DM and its implicit 
assumption of well organised, consistently marked up documents, we would also 
have to require a proper use of tags in order for the AHS to perform at its best. At 
least the author should prepare existing documents for the system initially before 

the automation starts1. For future adaptation we propose that new documents 
should be composed with some guidelines in mind: 

• Hyperlinks should be labeled so as to predict the content of the target. 
• The domain should be well structured and decomposed into smaller documents. 
• Knowledge sources on the same subject should be varied in different elements 

like lists, images, tables, text etc. in order to enrichen the knowledge base. 
• Emphasizers should be used with caution. 
• If applied, the title element and meta information should predict the content of 

each individual document well, and be varied among the domain documents. 

The prototype does not handle poorly tagged documents, nested lists, and simply 
skips advanced features like scripts and css. 

1. The Tidy program is available from www.w3.org and helps to fix incorrect use of mark 
up tags.
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