
1

Definition of terms ..3
1 Introduction .. 9
2 Motivation ..11

2.1 Background ...11
2.1.1 Challenges of HCI..11
2.1.2 Designing intelligent user interfaces..12
2.1.3 Design problems on the Web...13

2.2 Goals..15
2.2.1 Analysing, designing and bridging ..15
2.2.2 Methodology ..16

3 Related research ...17
4 Adaptivity...19

4.1 A model for IUI...19
4.1.1 Multimedia analysis ...20
4.1.2 Multimedia presentation ..20
4.1.3 Automated graphic design ... 20
4.1.4 Modelling and plan detection...20
4.1.5 Model based approaches ..21
4.1.6 Agents ..21

4.2 Adaptive systems...22
4.2.1 Classification of adaptive systems ...22
4.2.2 Factors and roles ..23

4.3 Models add power to adaptive systems...24
4.3.1 The importance of external models..24
4.3.2 Representation..25
4.3.3 Acquisition, maintenance and reasoning ...25
4.3.4 ITS, an illustrating example...27

4.4 Adaptive hypermedia ..27
4.4.1 A brief history of adaptivity...28
4.4.2 Recommenders - an example of adaptive hypermedia challenges28
4.4.3 Other approaches to individualised presentations......................................29
4.4.4 Future challenges ...29

4.5 Planning an adaptive hypertext system ...29
4.5.1 Building a domain model... 30
4.5.2 User modelling...30
4.5.3 Generating adaptive presentations ...31

5 It’s all about models ...33
5.1 Extracting information ..33

5.1.1 Hypothesis of this thesis ..33
5.1.2 Some possible approaches ... 34
5.1.3 What is HTML? ...35
5.1.4 Using tags in the conceptualization process ..36
5.1.5 Importance of the elements ..37
5.1.6 Using IR-techniques within important elements..41
5.1.7 Domain specific list ...42
5.1.8 Other ways to extract information ...43

Table of contents

2

5.2 A domain model in the horizon... 43
5.2.1 The sets of candidate concepts...43
5.2.2 Values separate the candidates...45
5.2.3 Their fate is in the hands of Heuristics ..46
5.2.4 Ensuring flexibility ..51
5.2.5 Relationship types ..52
5.2.6 Completing the domain model...59

5.3 Generating adaptive presentations ..60
5.3.1 Structure of the user model ..60
5.3.2 Adaptation Model ..62
5.3.3 Various forms of adaptations ...63

6 Implementation and evaluation ..65
6.1 Realising the domain model..65

6.1.1 A walk through the conceptualization processes65
6.1.2 Seaming up the domain model...68

6.2 Possibilities for the AHS...75
6.2.1 Picturing a simple user model..75
6.2.2 Adaptation rules ...77

6.3 Evaluation..80
6.3.1 Optimizing and justifying the performance ...80
6.3.2 An ocean of relations ...83
6.3.3 Document concepts vs. element concepts..83
6.3.4 Clean up the mess before the guests pay you a visit.................................. 85

7 Conclusion..87
References ...89
Appendix A - Source documents ..93
Appendix B - Results from conceptualization ..97
Appendix C - Results from PROLOG rules..103
Appendix D - PROLOG implementation..105
Appendix E - Implementation of conceptualizer ..109

3

Definition of terms

Adaptation model
A model of how an adaptive system should behave.

Adaptive Hypertext System
A system which offer to tailor hypertext documents dynamically according
to the knowledge, needs and preferences of each user.

Adaptive System
A system that adapts to the user. It is more general than an adaptive hypertext
system.

AE
Adaptation engine responsible for performing the adaptation according to
rules in the adaptation model.

AI
The field of Artificial Intelligence.

AHS
See Adaptive Hypertext System

AM
See adaptation model.

Author
A person that have written and structured a collection of hypertext
documents.

Browser
The environment software in which the user is exploring hypertext
documents.

C
Programming language.

Candidate concept
In the process of conceptualization, all terms surviving lexical analysis are
candidates to be chosen as the concept.

Concept
A concept is a descriptor of the content of some particular chunk of
information, or knowledge source. In this thesis, the concepts are abstracted
from their respective knowledge sources. See also document concept and
element concept.

4

Conceptualization
The process of abstracting concepts from the documents and elements of the
domain.

DFA
A Deterministic Finite Automaton object, or DFA, represents words in a
network of interconnected characters. Whole words can be found by
following paths of linked characters.

DM
See Domain model.

Document
By a document, we think of a collection of formatted information, e.g.
including text, graphics, tables and the like. For this thesis, we assume the
documents are published on the Web, if not otherwise noted.

Document concept
Concept abstracted from a document.

Domain
A domain is a collection of documents, where the documents are somehow
related around one or more abstract, higher level concepts.

Domain model
A domain model is a description of how the domain looks like regarding
content and structure. The domain model is built from concepts and
relations.

DSL
Domain specific list used by the system in the process of conceptualization,
that is a list of terms that the author has decided to be important for the
domain.

Element
A document consists of elements of different types. HTML provides easy
integration of elements like graphics, text, tables, lists and the like. In
HTML, the form of the elements are determined by the browser by use of
tags.

Element concept
Concept abstracted from an element.

Emphasizer element
Common notion for elements surrounded by the , <I>, ,
, <U> and <CITE> tags. Such elements get emphasised by the
browser, so they are likely to attract the attention of the user.

HCI
The field of Human Computer Interaction aims at achieving user friendly

5

systems. HCI concerns both the design of user interfaces and tools that
support the developement and implementation of interfaces.

Heuristic
Rules based on observations from a small set of data. We use two types of
Heuristics, both for finding concepts and for finding relations. Each
Heuristics employ a value that, when the Heuristic decides to fire on a term,
is added to the total score of the term.

High quality
When we speak of a domain model of high quality, we think of a resulting
model that would please the author when compared to his view of the
domain.

HTML
The Hyper Text Markup Language (HTML) is the language in which most
documents on the Web is written today. HTML uses mark up tags to specify
the formatting of documents.

Hyper reference
A link between two documents on the Web provides the user the option to
jump from the first to the other when selecting the link.

Hypertext
Documents written in the HTML language.

Information source
IR-techniques produce different sets of terms. These techniques are referred
to as information sources. DSL and lexical analysis are examples of
information sources.

Interface
The interface is what is between the user and the system.

Internet
A network of networks, providing several services like e-mail, news, the
Web, etc.

IR-techniques
Well known methods from the field of Information Retrieval that basically
process text.

IUI
The field of Intelligent User Interfaces (IUI) constitute the intersection of AI
and HCI, and concerns how to enhance the usability, simulating intelligent
behaviour in the dialogue with the user.

Knowledge source
Elements or documents filled with content in HTML, we call knowledge
sources.

6

Lexical analysis (LA)
The process of transforming a stream of characters into a list of lower case
terms or “tokens”. When combined with stopword removal, the idea is that
any text will be transformed into a list of terms where the most frequent
words in the english language, are removed.

Models
Models describe something so that the system understands it. In this thesis,
models for domain and users are represented in terms of concepts and
relations.

PHP
Programming language suitable for server side programming on the Web.

PROLOG
The declarative programming language PROLOG (programming in logic) is
often used when AI is involved.

Relation
Relates concepts. There are different relationship types, we use parental,
prerequisites, deeper explanations and synonyms.

Score
When conceptualising some text, the terms are given values from different
Heuristical rules. The score is the sum of all these values.

Sets on the form Ci
The union of all sets produced by the information sources. The result
constitute the candidates that compete for presidency as the concept.

Sets on the form KDOC
Holds all the element concepts and the document concept for a specific
document.

Sets on the form SP LA
SP LA, SP DSL, SP EMP and SP TF are sets of terms that are produced when a
paragraph element is exposed to the different information sources.

Sets on the form Rtype
All relations in the domain of the specified type

Stemming
The automatic fusion of term variants into one common stem.

Stopword removal
See lexical analysis.

System
With system, we mean the software running on a computer.

7

Tag
The author can use tags to mark up and format documents. In order to make
a sentence appear in bold, the tag is placed in front of the sentence, and
it is ended with an tag.

Term
A term is a word that has gone through the process of lexical analysis.

Term frequency
Indicates how many times a term occurs in a text.

Text
A collection of words.

TF
See term frequency.

UM
See user model.

User
The user is a person that is using a computer system. The user is
communicating with the system through the interface. Users have different
skills and can be broadly classified as novices, intermediates or experts.
Novices are assumed to have no knowledge at all in the domain at the time of
starting the learning process, intermediates have the basic knowledge, while
experts are assumed to have deeper knowledge.

User model
A model of preferences and the knowledge held by a user.

Value
Attached to the Heuristics are values, which are numbers to be given to each
candidate concept that leads the corresponding Heuristic to fire.

Web
The biggest service on the Internet is the World Wide Web. People often
mistake the Web for the Internet, but the two are not the same.

8

9

1 INTRODUCTION

The merging of many existing networks and the use of the standard HTTP protocol
for exchanging data on the Internet has opened for new ways of presenting
information to its users. Distinct from e.g. database systems, the information
system called the World Wide Web (or “Web” for short) are not structured and
users often feel overwhelmed with information when navigating the virtual space
at hand. Moreover, most online documents are static in nature, written once and for
the average reader. Adaptive systems promise a new interactive user experience by
accounting for the knowledge and preferences of each individual user or groups of
users and tailor presentations accordingly. The process of turning existing
documents into dynamic presentations is an expensive affair since it requires the
system to learn the knowledge of both the users and the domain. In this thesis the
goal is to identify methods for how the computer can assist a domain expert in the
construction of a domain model of high quality for an adaptive hypertext system,
requiring as little effort as possible from the expert. A domain model can be
constructed in many ways. Due to different methods and various approaches, some
models might represent the domain knowledge better than others. With “a domain
model of high quality” we therefore mean that the model not only correctly
captures the domain knowledge with respect to concepts and relations, but also
describes it very well if judged by an human expert.

The thesis is organised as follows: Motivated by an increased need for building
intelligent systems that can tailor presentations on the Web, we define the main
goals of this research in chapter 2. Thereafter, related research exemplify some
existing systems and important work from the field in chapter 3. Of the systems
built by today, a characteristic is that all operate in closed, restricted domains.
Chapter 4 explains why it is difficult to do otherwise, and furthermore places
adaptive hypertext systems within the frames of intelligent user interfaces in order
to prepare the reader of important terminology and knowledge from the field
necessary to understand before moving on. Next, the identification of Heuristics is
central in chapter 5 and provides the basis for ensuring quality to the adaptation
phase. Finally, in chapter 6, we develop a prototype implementing the ideas, and
evaluate the work. We also sketch how possible adaptation variants can be realised
fairly easily when a model of the domain is completed.

10

11

2 MOTIVATION

Throughout the last decade, several studies in the field have shown attempts to
make systems that fit individual users better. In an Internet context, adaptive
hypertext systems are named as promising.

2.1 Background

With his MEMEX, Vannevar Bush tried to beat the information overload he was
facing in 1945 [Bush45]. His ideas of storing and linking microfilm documents are
the origin of the hypertext idea, which have developed to the collection of
documents linked together in a non-linear manner today known as the World Wide
Web [Berners-Lee96]. The information overload problem has become much larger
than the generation of Bush ever imagined, and despite a dynamic conduct in terms
of a continually changing document collection, the Web is in many ways a very
static medium regarding the content presented to each user.

2.1.1 Challenges of HCI

From being a tool for the scientist or expert user only, the computer turned into
common property a couple of decades ago. As the number of people that used a
computer increased, so did the need for more user friendly systems. The society
today is flooded with information and is commonly referred to as “the information
society”. From a user point of view, computers are tools that provide services like
money transactions, entertainment, information development and exchange. In
order to fulfil their services, it is often required that the users have certain skills in
how to use the systems. Unless being trained before interaction, the fellow man
might therefore face troubles when interacting with computer systems. From the
user point of view, one should, ideally, not need to have any technical knowledge
on computers in order to survive in the digitized world.

An user interface constitute the intersection between the user and the software. In
the area of Human Computer Interaction (HCI), the user is in focus. The field
concerns the design of user interfaces, mental models to help the programmer in
the design phase, and tools to support the development and implementation of
interfaces. Schneiderman points out that due to the possibly broad spectrum of
usage situations, the developers are forced to go for designs that benefit all users or
the average user. The final product is not only constrained to user demands, but
also to the technology available. Thus, for the user, the individual satisfaction of a
piece of software may vary a lot [Schneiderman00]. Due to the great challenge

12

when designing for a broad audience, several techniques have evolved during the
past two decades in order to support developers to meet the goal of usability.

Usability concerns how well a system can be used. If a system can be easily
learned, is efficient in use, its functionality easy to remember, its appearance
pleasant to the user and the offered services are regarded trustable, the user is more
likely to feel satisfied. E.g. command based systems that have no graphical user
interface might please some users, but the vast majority will probably feel more
comfortable with a graphical user interface, or GUI, using windows, icons, menus
and pointing manoeuvres in order to navigate and act. Even though the graphical
environments of today are somewhat more user friendly than their text-based
predecessors, users still feel it challenging to learn new systems and programs. In
order to write a document, a novice user must first learn how to navigate in the
operating system and how start and use a text editor and its functionalities - which
may indeed not seem too obvious. Thereafter, the typing begins and the user
eventually discovers that it is not easy to instruct the computer on what to do. All
details on which procedures to follow in order to initiate an action are likely to
interrupt or confuse the user, hence removing focus from the task at hand, i.e.
writing the content of the document.

According to Nielsen, the notion of usability is difficult, yet important, to realise
[Nielsen92]. Moreover, the design and implementation of user interfaces is a
complex matter. There is no silver bullet to make the design and implementation
easier [Myers94], and many problems face designers, only but a few are mentioned
here:

• designers have difficulties thinking like users do
• the tasks and domains in which to operate can be complex
• iterative design is difficult, but necessary
• the design process is creative rather than mechanised due to lack of theory and

methodology
• there is a huge span in user knowledge, and the cost of making many differing

versions of the software often is too expensive.

Nielsen further proposes an usability engineering lifecycle of design. In order to
obtain successful user interfaces, the process of usability engineering should not
only consider a larger context and analyse the user needs and characteristics before
the design stage, but also collect user feedback after the release date. In other
words, the result should be regarded as a prototype for the next version of the
software.

2.1.2 Designing intelligent user interfaces

The difficulties involved in creating an interface that is easy to understand, yet
flexible for the user, have inspired the growth of another field, namely one that
adds intelligence to the system. The field of intelligent user interfaces (IUI) is an
effort to solve the problems of usability, thereby increasing the user satisfaction of
the interactive experience. Combining techniques from artificial intelligence (AI)
with HCI yields interesting possibilities, including the ability for the system to
reason on what the user really wants, adapt its behaviour to each individual user,

13

provide context sensitive help, understand inaccurate user input and generate
presentations on the fly according to individual preferences or the knowledge level
of each user.

As an example, an intelligent interface to an image processing program could
monitor the user’s actions and then try to infer the user’s goals. Thereafter, it would
offer to complete the work for the user. Say, if the user resized a picture, saved it,
and then repeated the action for another picture, the intelligent system would
expect the user to repeat the same procedure on other pictures as well, and hence it
should offer the user to automatically complete the task of resizing and saving a
series of pictures. Identification of patterns from user behaviour is a simple
example of intelligent behaviour. A wide range of potential application areas exist,
however. Fine, if IUI is such a good thing with its main goal to meet the user in
new, more intelligent ways - then why don’t existing software apply such systems?

In order to improve efficiency and naturalness of the interaction, an IUI must
represent, reason and act on models of users, domain, task, discourse and media
[Maybury+98]. In short, the extended model needed for IUI development along
with the difficulties involved in applying artificial intelligence techniques, makes
the process of designing an intelligent user interface a lot more complex than that
of traditional user interfaces. Chapter 4 contains a survey of some subordinate
fields of IUI.

2.1.3 Design problems on the Web

Hypertext provides information in a non-linear manner (e.g. as opposed to the
predefined curriculum of textbooks) which means the user can decide what to visit
next and reach related information through visiting linked documents. The links is
a structure of paths, and the paths available offer flexibility to the user, as
illustrated in Figure 2–1. For a domain on a specific topic, notice that since readers
might jump in on a document from somewhere else, it is not even certain that the
user has followed one of the paths as outlined by the author [Berners-Lee95]. In his
style guide for online hypertext, Berners-Lee emphasises that what is natural as
links for one visitor may seem redundant for others [Berners-Lee95]. Due to the
navigational freedom of hypertext environments and the vast amount of
information available, users often feel a sense of getting lost in hyperspace, that is
they are confused about where they are, or where the information they seek is

14

located. In general, publishing information online does not automatically make that
sort of information more accessible.

The implicit ordering of a document concerns the organisation of information
within the document. The author of one domain does not have to know about the
content of another, nor what the user knows in advance of interaction, and
therefore a document essentially consists of the information the author finds most
natural to group.

With the growth of the Internet, the usability and design problems have become
particularly challenging. The huge span in user interest, level of knowledge,
motivation and experience, makes it very hard to publish online material that is
suitable for each particular user using conventional methods. The field of Adaptive
Hypermedia, and in particular Adaptive Hypertext, promises to overcome such
problems by offering hypertext presentations that are automatically tailored to each
particular user. For instance, a domain on the Web offering articles on
“Astronomy” may expect very different visitors ranging from the open-minded
child, the novice student, the retired woman pursuing the hobby of star watching,
to the Doctor of Astronomy. Obviously, what is comprehensible for the expert may
be very difficult for the child, and what is made fit the novice is annoyingly trivial
to a more skilled person. When accessing a document that contains difficult
information, the novice should therefore be presented the concepts necessary to
understand first. Likewise, an adaptive hypertext system should not present all the
information with which the expert is already familiar, but trim it to a suitable level.
Moreover, the system could deliver a wide range of presentational forms based on
individual preferences, i.e. graphics, text, tabular information, animated sequences
and the like.

As with IUI, models are needed in order to make adaptive hypertext systems, in
particular models of the domain knowledge and the user knowledge. The number
of adaptive (hypertext) systems is increasing, but it is, however, considered time

Figure 2–1: A typical hypertext graph structure. Some users might choose to jump directly
from A to D, whereas others prefer to follow the path A to B to E to D or even the entire path

A to B to C to F to E to D.

15

consuming to integrate existing web-pages into an adaptive environment since
adaptivity requires that the system has knowledge of the content of each document
in the domain, and this process is often plotted into the system’s knowledge base
by hand.

The challenging task of integrating adaptive behaviour into an Internet setting is of
ever more interest. We therefore feel the need to decrease the time required to
model the knowledge of the domain. With the basis that it is possible to, at least
semi-automatically, process existing hypertext documents and extract the
information within in such a way that a system can apply the resulting model so as
to offer adaptivity to the end user, this thesis explores how.

2.2 Goals

According to Kobsa, there are two main problems with traditional hypertext
[Kobsa+94]. First, the user often finds it difficult to orientate in large virtual
spaces and therefore easily gets lost during the interaction. Second, it can be hard
for novices to understand difficult concepts, since regular documents are written
for the average audience.

2.2.1 Analysing, designing and bridging

The idea that the user should decide what to visit next through browsing has both
positive and negative sides. In a traditional hypertextual context this facility
provides freedom to the user, whereas in the adaptive world, it acts as a limitation.
In advance of the interaction the user does not know exactly where in the
hyperspace each particular chunk of knowledge exists, and in order to get to the
information sought, the user has to rely solely on the descriptive names of the

links, menus or sitemaps as organised by the author1. Furthermore, in situations
where some concepts are assumed to be known prior to visiting a document, the
information presented could be difficult to understand if the user lacks knowledge
on these concepts.

If a system could both learn the content and the informational properties of a
domain, and infer what each user knows at a particular time, it would be able to
redefine the predefined (implicit or explicit) curriculum of the domain for each
user at run-time. In order to prepare a domain for such an adaptive system, a model
of the domain must be constructed and understood by the system. Moreover, the
better and more automated the construction of the domain model, the less the
threshold for an author to go for an adaptive solution while trusting that accurate
adaptations will result. Based on the discussion so far, we define the main goal of
this thesis as to design an adaptive hypertext system that can work behind the
scenes and tailor the documents of a domain according to the knowledge of each

1. A sitemap shows the structure of the domain so that the user can more easily get an
overview of how it is organized and jump directly to the area of interest.

16

individual user, doing so through an extensive analysis of existing HTML-
documents without requiring the author to rewrite and reorganize new documents.
A system would perform at best if the domain model is as complete as possible
[Davis+93]. We therefore mainly concentrate on ensuring quality to the
representation of the domain knowledge.

As will come clear throughout this thesis, an adaptive hypertext system has many
target application areas. E.g. Schank stresses the need for 1-1 learning situations
[Schank95]. As with the astronomy-example, electronic education often suffers
from a lack of individual considerations. In an educational context, a teacher would
benefit if offered means to turn an existing static course into dynamic presentations
tailored to each student with very little effort required. In addition to the adaptive
generations of content, the system could help students in planning how to browse
the domain, or give advice along the road.

2.2.2 Methodology

Computer Science have historical bonds to mathematics, science and engineering.
According to Denning these roots are the basis for the three paradigms of
Computer Science, namely those of theory, experimentation and design
[Denning99]. Furthermore, Denning divides Computer Science as a discipline into
several subareas, each of which has activities in each of the three paradigms. The
areas named range from Algorithms, Programming, Architecture, Operating
Systems, Databases/Information Retrieval and Software Engineering, to Artificial
Intelligence, Graphics, HCI, Computational Science and Bioinformatics.

Whereas the paradigm of theory concerns the construction of frameworks, the
paradigm of experimentation explores and tests models of systems. The paradigm
of design focuses on how to build computer systems that work in given application
domains. Theoreticians often aim at deep, comprehensive analyses around formal
models. Experimenters often use prototyping to quickly construct models of
systems. Designers build systems according to accurate specifications which
satisfy their customers.

This study belongs within the intersection of the paradigms of experimentation and
design. Aiming at semi-automatically building a domain model from a collection
of hypertext documents, we first experiment on how the use of certain techniques
can help in the process, then validate the experiments through empirical
prototyping, followed by a discussion of the results which is the basis for designing
an adaptive hypertext system.

Table 2–1: The main goal of this thesis

The main goal of this thesis is to design an adaptive hypertext system in order to bridge
the gap between the domain knowledge and user knowledge, and building the models
needed in the system through an analysis of existing hypertext documents of the
domain.

17

3 RELATED RESEARCH

Hypertext documents tend to overwhelm the reader with too much information, or
an inappropriate level of detail is presented. Several studies and systems propose
solutions to these problems.

In his survey, McTear mentions two systems. METADOC uses a technique called
“stretchtext” where classifications of users and concepts are used to vary the
amount of detail presented. The HYPERFLEX system can guide the user to
information judged to be relevant by recommending topics based on preferences,
goals and needs of different users. Matrices are used to link topics in a document
and to link topics with nodes representing particular user goals. The system learns
through user feedback, by adjusting the weights of the links [McTear93].

The system KN-AHS achieves adaptivity by using the shell system BGP-MS. The
user may ask about more information related to hotwords, and the data presented
reflects what the system believes the user knows. The self-explanatory user
interface stimulates user navigation. Knowledge about the user is both based on an
initial interview with the user and by deducing what the user knows based on
navigational behaviour. [Kobsa+94].

Three systems are exemplified by Kules: AVANTI is a system that customizes web
pages about a metropolitan area for different users (tourists, handicapped, elderly,
residents). INTERBOOK is an advanced WWW application and supports
incremental learning. In a web-environment the HTML model and the HTTP
protocols limit the details about user actions. Therefore in order to infer what the
user know, the system keeps track of what the user has seen. Finally, ORIMUHS is
a context-sensitive help system and employ sophisticated user models [Kules00].

Even though simple user models are able to represent all the necessary knowledge
to achieve curriculum sequencing and adaptive guidance, the knowledge state of a
user in www-based learning systems is complicated to maintain. Weber et. al
present a solution using a combination of an overlay model and an episodic user
model [Weber+97]. The episodic learner model (ELM) stores knowledge about the
user in terms of a collection of episodes. In our work, we take a quite similar
approach to the structure of the knowledge based tutoring system ELM-ART II,
whose steps are:

1. Translating text to small sections of units/HTML-code associated with concepts
to be learned.

2. Building a conceptual network with links among related concepts. When a page is
visited, the corresponding node in the network is updated. Dynamic slots are
stored with the learner model for each user and make it possible for the system to
guide the user optimally through the domain. By marking concepts of a unit as
known an inference process (possible recursive) that marks all prerequisites to

18

this unit as inferred, is started. This corresponds to the curriculum sequencing and
adaptive guidance noted above.

3. Recording all interactions of the learner (the student) in an individual learner
model

4. Using traffic lights visible to the user during surfing as a metaphor for annotating
links, should reflect the information in the user model.

5. Dealing with inconsistent knowledge by means of tests.
6. Incorporating means for the user to re-use the code of previously analysed

examples and to easily navigate an optimal learning path by clicking a next
button. This feature also helps the user from getting lost in the hyperspace.

This approach has several advantages: it provides a selection of examples that best
puzzles the present learning situation, it is suited for diagnosing solutions to
problems, and it gives individualized help.

ELM-ART II differs from our work in that our focus is on developing means to
semi-automatically associate concepts of high quality with each HTML unit and
building a conceptual network representing the domain. Like us, Ashish et. al use
formatting information in Web pages to “hypothesize the underlying structure” in
order to provide integrated access to multiple Web sources in a particular domain.
The sources are parsed for sections and subsections relying on heuristics for font
size and indentation spaces. [Ashish+97]. The AHM system uses a model where
the documents explain the concepts they are linked to and the links are assigned
values that indicate the level of difficulty [da Silva+98].

We believe that once the domain model is built, adaptive variations can be made
fairly easily. For example, in their WHURLE system [Moore+01], Moore et. al
follow the track of Ted Nelson’s vision of transclusion by including smaller pieces
into a document led by a lesson plan and the user profile.

19

4 ADAPTIVITY

Developing an adaptive user interface (AUI) requires an interface that can be
adapted, a user model and a strategy for how the adaptation should take place. An
overview of the field intelligent user interfaces (IUI) is briefly introduced in
section 4.1. Within this context, adaptive systems are more deeply examined in
section 4.2. For adaptive systems, the importance of the underlying models can not
be underestimated, and are discussed in section 4.3. With this, a foundation for
understanding adaptive hypermedia, whose strategies are brought to light in
section 4.4, is made. Finally, section 4.5 outlines an architecture for an adaptive
hypertext system (AHS) to help illustrate the main points of this thesis.

4.1 A model for IUI

Traditionally, interface models accounted for presentation, dialogue and
application. With intelligent user interfaces an extended model is needed,
including input analysis, management of the interaction and generation of the
output [Maybury+98]. An interesting observation is that the intelligence in the
input, output and interaction processes gets provided through the use of explicit
models of user, task, media, domain and discourse. Figure 4–1 gives an overview
of a generic model underlying most intelligent user interfaces. Important sub-fields
of IUI are exemplified below.

Figure 4–1: Overview of the field of IUI

20

4.1.1 Multimedia analysis

The field of multimedia analysis supports intelligent processing of multimodal
input. The information from all the input sources are interpreted and merged
together into one integrated meaning, as shown in the “interaction management”
and “media analysis” areas of Figure 4–1. The goal is to let the user communicate
with the machine instead of only using it, while accepting possibly ambiguous
input. Koons describes a prototype operating in the blocks world which integrates
and interprets simultaneous input from speech, gaze and gestures using a frame-
based method [Koons+93].

4.1.2 Multimedia presentation

Multimodal presentation systems use many media in parallel in addition to
exploiting the strong sides of each medium. The generic problem when using
multimedia in an intelligent setting concerns how the computer can analyse and
construct multimedia presentations on the fly. The process of generating output is
related to the context, task and user expertise. Selecting the content, allocating and
realizing the media and performing layout are interdependent processes. Their
underlying knowledge sources are of great importance [Arens+93], as also
depicted in Figure 4–1. The knowledge-based presentation system WIP generates
multimodal presentations by means of an incremental planning process while
reasoning about the task and context [Wahlster+93].

4.1.3 Automated graphic design

Designing every possible data and presentation situation is an ineffective,
comprehensive task that often requires the developer to be an expert. An
illustration usually has a communicative intent and gets interpreted in some way by
the receiver. Hence, the goals of automated graphic design include letting the
system decide how to generate the graphical presentations and from the user’s
point of view to remove the possible ambiguity between intended and interpreted
presentations. Since the design process needs to be tailored to the context, task and
user, it relies upon the use of models. The IBIS system makes use of a generate-
and-test approach with a goal-driven search process. If a solution is not
satisfactory, the system backtracks so that the illustration can be regenerated.
Formalizing the intention of a communication reduces the ambiguity of
presentations [Seligman+91].

4.1.4 Modelling and plan detection

Typical tasks of intelligent systems like planning explanations, answering
questions based on prior discourse and supporting interruption, rely upon the use
of underlying models. A user model contains information about users. A discourse
model has descriptions of the history, syntax, semantics and pragmatics of the
dialogue between the user and the system. UCEgo is a consultation system that
corrects the misconceptions of a user or provides needed information that is not

21

explicitly asked for. Gaps in knowledge are discovered through reasoning about
the user model e.g. whenever changes in environment or internal state occur. The
UCEgo agent needs to be both autonomous and do rational planning to make
intelligent initiatives. Goals depend on context, and the central problem for UCEgo
concerns how to detect new goals when they are not stated by a human planner
[Chin91].

4.1.5 Model based approaches

Model based user interfaces constitute a different approach to intelligent user
interfaces by allowing the designer to describe a model consisting of facts rather
than using large procedural programs. The goals comprise the reduction of the time
and expertise required to create user interfaces, the identification of reusable
components, and the construction of extensible models in an easy, comprehensible
way while maintaining as much of the expressiveness as possible. Model based
development has advantages over traditional user interface toolkits and UIMS
systems. Dialog control is separated from the application code and the designer is
blessed with more powerful design tools. Modifying the behaviour of an interface
only requires to change the model instead of reprogramming a certain section.
Merging the best aspects from the UIDE and HUMANOID systems, the
Mastermind project constitutes a step towards a complete model supporting the
entire design-cycle [Nechest+93]. The overall goal of Mastermind is to generate
automated and animated help facilities, as in UIDE [Foley+88], [Sukaviriya+93],
and use the design models to “map low-level user gestures onto high-level
semantics” [Möller]. The prototyping stage is easier because conceptualization is
regarded as a search in a space of alternative designs and explicit models ensure
consistency between task and design.

4.1.6 Agents

Among the arguments in favour of an agent-based approach to intelligent user
interfaces, are the need for distributed computing and the limitations of direct
manipulation [Schneiderman+97]. Direct manipulation and software agents are
complementary rather than mutually exclusive. Agents are more convenient in
settings with complex environments, difficult tasks, a dynamic network of people
and information, or relatively naïve users.

Tveit observes that the most common classification scheme distinguish weak from
strong agencies [Tveit01]. In a weak notion, agent attributes are:

• Autonomy - agents decide for themselves what to do and when to do it
• Interactivity - they are willing to work in concert with other agents when

requested to
• Reactivity - they are able to sense and act on the environment
• Proactivity - they take initiative

In a strong notion, the following attributes add to the previous list:

• Veracity - their actions can be trusted by a person and they do what they are told

22

• Mobility - they move around from one place to another whenever necessary
• Rationality - they perform their actions in an optimal manner

According to Bradshaw [Bradshaw97], one may either look at the agent as an
ascription made by a person in terms of what they are, or as a description of its
attributes (i.e. a list of what they do). He points out that communication with
humans should take place in a non-symbolic, natural language-like way and that
the agent should be using models to infer new knowledge. In short, its overall task
is to adapt to its environment and learn from experience over time.

Agents fit complex software systems well, since they can be viewed as organised
sub-systems that facilitate decomposition and interaction [Jennings99].
Furthermore, they may play various roles for different people and situations, i.e. as
personal assistants, intelligent user interface managers, agents behind the scenes,
performing agent-to-agent communication etc. Acting as personal assistants,
agents become more effective as they learn the preferences, habits and interests of
a user. How do they acquire sufficient competence of their users, and do users
actually trust the help offered? A knowledge-based approach to the problem makes
use of domain specific background knowledge about both application and the user
[Maes94]. Maes argues that an alternative approach that relies on machine learning
techniques may be more convenient if different users use different strategies and
habits in the interaction with the application. Given only a minimum of
background knowledge, the agent has to search actively for information about the
user and his tasks. This is done either by monitoring the user i.e. by searching for
repetitive actions, through user feedback, training examples provided explicitly
from the user or through the interaction with other agents.

4.2 Adaptive systems

Presenting easy, efficient and effective interfaces is the main goal of adaptation.
[Malinowski+92]. It is difficult to write software that will fit millions of users
perfectly. Nobody learns a system completely but uses different parts of it and
shares some common basic knowledge about its functionality. Adaptive systems
change this paradigm by turning use time into a different kind of design time by
adjusting the interface according to the user’s skills, knowledge and preferences. In
order to achieve adaptivity, underlying models of both user and task are essential,
as well as the separating the user interface from the application [Fischer00].

4.2.1 Classification of adaptive systems

When working with computers, users need to adjust the interface according to their
own needs and preferences, goals, tasks and contexts. For the system to say the
right thing at the right time in the right way implies reducing the information
overload and adapting the presentation to the relevant task, knowledge and
experience of the user. An AUI supports this process in more or less sophisticated
ways, while a static interface doesn’t. Malinowski et. al describe a taxonomy that

23

places adaptive systems in the context of intelligent user interfaces: Roles of an
intelligent interface are fulfilled by the integration of an AUI, an intelligent help
system and an intelligent tutoring system. These roles comprise adapting to the
needs of the user, provide context sensitive help, and supporting the user of the
system [Malinowski+92]. The taxonomy used is based on four stages of the
adaptation process, namely initiation of the adaptation, proposal of possible
changes, decision of actions to be taken and execution of the selections. The degree
of adaptation depends on whether the user or the system performs each of the
stages. As an example, a system is called self-adaptive if it performs all of the
above stages itself.

Furthermore two groups of adaptation are distinguished: adaptation of
communication and adaptation of functionality. The first group includes systems
that provide context sensitive help, like UIDE [Sukaviriya+93]. The second covers
the automation of tasks and generation of new complex functions, offering a
solution to an important goal of intelligent systems, namely to let the computer
carry out the routine tasks and allow the user to perform the creative ones. At the
syntactic level, adaptation may yield counting the number of interaction steps,
while a higher-level adaptation accounts for goals and tasks of the user as a basis
for achieving functional adaptation.

4.2.2 Factors and roles

It is important to decide when interaction should occur, what information to use
and how to present it on the screen. The needs of users or groups of users must be
considered before the system is built. At use time, adaptation can happen
continuously by comparing the situational changes to the user’s needs, but also on
junctures (predefined critical situations), on special occasions or on user requests.
Adaptation implies a certain risk, e.g. situations where the user and the system are
trying to adapt to each other and thus never reach upon an agreed interface
[Malinowski+92]. The adaptation process might also confuse the user if not done
carefully. Fischer stresses that in an adaptive setting little or no effort is required
from the user, possibly resulting in loss of control [Fischer00]. In adaptable
systems, however, the user is regarded to know its tasks best and should therefore
make changes to the functionality by setting preferences. This requires the user to
learn about the existence of, and how to use the adaptation component.

The environment is an important factor when designing intelligent user interfaces.
Most systems behave intelligently only in their original surroundings - with
changes, the performance degrades. An adaptive system, however, gains its power
by reacting to a changing environment. One way to defer the design is by
incorporating different variants into the system and let triggers activate the set of
design choices. Hence measurements for evaluating the benefits of the design are
important for the adaptation process, whose requirements are:

• a theory which relate user behaviour to user interface needs
• access to what the user does
• models of e.g. task and user
• a flexibility in the user interface to accommodate new design variants
• an agent to make this design choice

24

Rautenbach uses a simple game for classifying adaptive systems and proposes a
two level architecture for adaptation.

In the model in Figure 4–2 a higher level adaptor identifies major changes and
chooses the best design-variant, while at the lower level, the focus is on adapting
the interface according to the user's needs. This separation of modeller and
introspector is convenient [Rautenbach+90].

4.3 Models add power to adaptive
systems

An AUI is generated at run-time, meeting the demand that interfaces to complex
systems should be able to adapt to different users. In particular, user modelling is a
key term for the provision of adapted services, and covers the process of gathering
relevant information about each user. This knowledge source is essential for the
dialogue behaviour of the system and for reasoning about the user. In this section
models, and especially user models, are explored in the context of adaptive
systems.

4.3.1 The importance of external models

Making models explicit to the system extends flexibility, but these sources may in
some systems be implicitly contained in the code, and furthermore distributed or
centralised [Malinowski+92]. Modelling components should maintain the models,
e.g. by building the model incrementally, maintaining its content, providing
consistency, and supplementing other components of the system with information
about the user or the dialogue. The XTRA system uses external components in
order to assist the user in filling out tax-forms [Wahlster91].

Figure 4–2: Two-level architecture for adaptation

25

4.3.2 Representation

According to Davis et. al, a knowledge representation is a fragmentary theory of
intelligent reasoning [Davis+93]. Despite its incompleteness, adaptable behaviour
does require intelligent selection of content, and in order to achieve it, the choice of
representation becomes important.

A user model can represent individual users or classes of users. The dimension
ranges from individual user models, through stereotypes, to canonical models.
Individual models may be cost-expensive with respect to maintenance, but they
provide more flexibility to the system. Canonical models do, on the other hand,
characterise abstract, typical users. In between, stereotypes are clusters of
characteristics and have proven useful for building powerful models of users when
no, or only a small amount of information, is available [McTear93]. Rich presents
the system GRUNDY that acts as a librarian recommending books based on a
dialogue with the user [Rich79]. Two kinds of information is required for enabling
an effective use of stereotypes in GRUNDY. First, a set of facets associated with
values will in sum characterise the user. Secondly, triggers signal when a
stereotype is appropriate and should be activated. The information in the
stereotypes is probabilistic, and therefore constitute <attribute, value, rating>
triples. The user model, or user synopsis (USS), is built from information of
actions, stereotypes and the user. Since the system must justify its own
information, the USS consists of a set of <attribute, value, rating, justification>
quadruples and is used for guiding the rest of the system. Inheritance plays an
important role for stereotypes in order to deduce information.

While the stereotypes in GRUNDY rely on linear parameters with simple numeric
scales, other techniques for constructing user models exist. If the system should
represent the user's knowledge, goals, plans etc., a more expressive scheme, like
concept-based representations, is needed. [McTear93]. In FRONTMIND, a
bayesian network is used [Kobsa01]. Other schemes can be based on logic,
inference rules, frames, production rules and connectionist (neural) networks. In
the SiteIF project the user models are represented by semantic networks where
every node and relation have weights in order to represent different levels of
interest for the user [Stefani+99]. Kules suggests some guidelines that should be
considered when constructing user models for adaptive systems, focusing on the
importance of embedding the philosophy “know thy user” into the system
[Kules00]. The user should also be aware of the existence of, and understand the
user model, possibly being allowed to adjust its attributes. Fink et. al stresses
privacy issues and an open dialogue with the user in their AVANTI system. In
additional to technical solutions regarding security, users can choose the sort of
modelling to be used [Fink+97].

4.3.3 Acquisition, maintenance and reasoning

In GRUNDY, learning happens through the modification of the stereotypes. In
general, updating user models is important when interacting with a user over time.
The values of the above attributes may be either explicitly captured by prompting
the user for information (user driven acquisition), or implicitly during the course of

26

dialogue (system driven acquisition). In the first the system plays a passive role.
Stereotypes might be used when information about the user is limited, or as a
supplement to other methods. Implicit acquisition, on the other hand, is more
dynamic and requires rules of inference and a way of handling conflicting
information [McTear93]. The analysis engine is essential to the system as a means
for deriving new facts about the user, and next potential steps can be suggested.

Even though the information contained in a user model varies according to the
application, situation and the sort of modelling used, a typical user model needs
maintenance on the following attributes [Kules00]:

• User preferences, interests, attitudes and goals
• Skills of the user (concerning both domain and system)
• Interaction history
• Stereotypes, if present

Connectionist networks can more easily handle inexact information and
incremental acquisition by assigning each node with energy levels (which are
spread to connected nodes in the network) and allow the weights of the nodes to
gradually evolve over time.

How to model the user’s knowledge and beliefs is important for an adaptive
system. Plan recognition helps inferring new tasks and is a source for further
information about the adaptation. In order to provide context-sensitive feedback,
plans can be recognised by monitoring or reasoning about the user
[Malinowski+92]. The KNOME-system infers what the user knows about UNIX,
providing different answers to users with different levels of expertise. McTear
emphasise that models tend to be incomplete and inconsistent. The information
provided by the user is more likely to be true than information based on the user's
stereotype. The more specific information should therefore override the more
generic information if the properties are inherited. Methods for combining or
adjusting numerical values are also part of the maintenance process [McTear93].

Dynamic models are closely related to adaptive systems, but require methods for
resolving conflicts. According to Kobsa, the shift from traditional shell systems
towards less demanding domains like user-tailored web sites, made complex user
modelling redundant, i.e. other aspects yield significance:

• quick adaptation should be based on short initial interaction
• companies can integrate their own methods or third-party tools
• heavy work should be distributed
• mechanisms to recover in case of system breakdown
• inconsistencies and faults in the models must be avoided

New services like predicting the future actions of a user based on trends among
similar users, demand support for privacy policies and explicit representations of
the patterns inferred. Systems like PERSONALIZATION SERVER and GROP
LENS, provide many benefits: easy access among applications on user
information, methods that can be applied for model protection, easy integration of
complementary information from different sources, and centralising the user model
servers in order to relieve the clients from the user modelling tasks. Serving many

27

applications at the time is solved by allowing the user modelling system to
communicate with the application through inter process communication
[Kobsa01].

4.3.4 ITS, an illustrating example

Hypertext documents tend to overwhelm the reader with information or present an
inappropriate level of detail. User modelling helps an adaptive system to avoid
presenting information that is already known to the user. Goals of intelligent
tutoring systems (ITS) are curriculum sequencing and interactive problem solving
support. These goals reflect the need for models in adaptive systems well. The first
concerns the order in which new knowledge should be learned. In textbooks the
author has predefined the curriculum of the learning path in advance of the
interaction. Such a static organisation assumes an average learner and does not
take into account individual preferences. Electronic textbooks take user freedom a
step further since they allow for a more random-like surfing through the text by
choosing links. An adaptive system should, in addition to this freedom, “give hints
as to what pages will be most suitable for visiting next” [Weber+97]. In other
words, the user should not have to work way through new pages that offer
knowledge with which he or she is already familiar. Browsers that annotate visited
links come short in comparing the content of a document with the user knowledge.
Representing the individual user knowledge in corresponding user models is
essential for adapting the presentation distinctively for each user. The second goal
concerns interactive problem solving support and can be facilitated through model
tracing, using techniques where the system e.g. monitors the user during problem
solving and gives advice when it discovers that the path followed will lead to an
error.

In ITS, individual student models representing the student’s knowledge of a
domain, are subject to frequent changes and therefore have to be updated
continuously. One way to achieve adaptivity in this setting is by inferring which
concepts are learned, and compare each student model with an ideal model
constructed in advance of the interaction. The result is that new information can be
customised according to what is most useful and understandable for each student.
Combined with hypertext and a Web environment, this yields new opportunities
for net-based teaching, i.e. replacing the traditional learning situation with a non-
linear course tailored to each student.

4.4 Adaptive hypermedia

Conventional hypermedia applications offer navigational freedom, but rely on a
strong authoring model which assumes that the author “knows best” [Bodner+00].
Adaptive hypermedia systems attempt to overcome these problems of orientation
and comprehension, particularly necessary in a Web environment. As noted before,
an adaptive system uses explicit models to achieve its goals often founded on
intelligent technologies for user modelling and adaptation.

28

4.4.1 A brief history of adaptivity

Brusilovsky presents the state of the art in one of his surveys [Brusilovsky01]. The
research field of adaptive hypermedia can be traced back to the early 1990s and is
a result of the two somewhat older parent fields of Hypertext and User Modelling.
The year 1996 is a milestone in the “adaptive world” because of the explosive
growth of the World Wide Web and the accumulation of experience in the field.
Before 1996, mostly laboratory systems were built to demonstrate ideas, whereas
systems born after 1996 demonstrate real world settings. Currently, three major
technologies exist, namely adaptive content selection, adaptive navigation support
and adaptive presentation:

1. Adaptive content selection: Such systems select and prioritise the information
resulting from a query according to what is assumed to be most relevant for the
user.

2. Adaptive navigation support: Studies have shown that manipulating link
anchors can increase the navigational speed and prevent the user from feeling lost
in hyperspace, but also that only certain strategies work [Höök+99].
Approaches include directed guidance, link hiding, link sorting, link removal,
link annotation and map adaptation.

3. Adaptive presentation: Systems that have means to present the content
dynamically or adaptively belong to this category. A widespread strategy is to
conditionally show, hide, highlight or dim fragments, whereas other systems
tailor new, adaptive documents by comparing a user model to an overlay domain
model. Presentations according to the needs of each individual visitor is often
referred to as customization, whereas transformation improves the presentations
by identifying interaction patterns from all visitors. Finally, content based
adaptation organises material based on content and apply for ITS and the like.

Whereas the first generation of adaptive hypermedia concentrated on modelling
user knowledge and goals serving adaptive navigation support and adaptive
presentation, the second focused on adaptive recommendation systems based on
modelling user interests. These systems monitor the browsing activity and try to
deduce the goals and interests of the user. If successful they can present a set of
relevant links. Nowadays, a third, mobile generation adds to the system models of
context like location, time, bandwidth and platform, hence improving functionality
so as to adapt to the user situation as well [Brusilovsky+02].

4.4.2 Recommenders - an example of adaptive
hypermedia challenges

It is important to distinguish recommenders working in a closed information space
from those working with the whole Internet. Today search engines make use of
techniques from information retrieval research. A similar (yet far more powerful)
adaptive hypermedia system needs to learn about the structure and content of
nodes by analysing the documents and turn them into a corresponding closed
hyperspace. Learning about the structure of documents requires working within a
closed space. According to Brusilovsky, there are two ways to close an open
hyperspace [Brusilovsky01]:

29

1. Select the most relevant links by analysing a few steps ahead of the present
browsing point of a single user.

2. Learn about the documents by collecting browsing data from a community of
users.

The goal of the process is for the system to understand hypertext-documents and
links without use of a human indexer, and obtain documents indexed
corresponding to the user’s goals, knowledge and background.

4.4.3 Other approaches to individualised
presentations

Next door to adaptive hypermedia systems we find the field of dynamic hypertext
which uses natural language techniques in order to fuse information and move
away from the strong authoring model offered by traditional hypertext. Dynamic
hypertext unifies querying and browsing, thereby avoiding the need of switching
between search mode and browse mode. Another benefit is that dynamic links
don’t get broken. Bodner et. al claim that systems implementing the idea work best
for collections with coherent vocabulary and well written text [Bodner+00]. Both
adaptive hypertext and dynamic hypertext tailor documents to the user. The latter
contrasts adaptive approaches since there are no existing hypertext documents
before the user requests them [Milosavljevic+98]. In other words, dynamic
hypertext systems move further than adaptive hypertext systems, thereby
overcoming the problem of committing to some pre-written segments.

4.4.4 Future challenges

Adaptive systems provide dynamic adaptation through possibly implicit
acquisition and hence little or no effort is required from the user who may not even
know about the existence of user models. With the shift from expert users to
relatively naïve inexperienced users in the Web environment, complex systems
providing adaptivity at satisfactory levels while preserving the need of the user
feeling in control are required [Schneiderman+97]. Fischer emphasises the need of
separating user modelling from task modelling. Privacy should be maintained and
misuse of the models avoided. These aspects challenge many commercial
strategies found on the World Wide Web today [Fischer00].

4.5 Planning an adaptive hypertext
system

According to Wu et. al, most adaptive hypertext system architectures depend on a
domain model (DM), a user model (UM) and an adaptation model (AM) [Wu+01].
In this thesis we focus on ensuring quality to the construction of the domain model
of an AHS, whose overall strategy is introduced in this section. Some components
are based on ideas from ITS.

30

In order for adaptation to take place in a sophisticated way, the AHS needs to build
a model of the domain, maintain individual user models, and generate adaptive
documents by reasoning on what the user should be presented next.

4.5.1 Building a domain model

A domain model must represent important information in order to express the
domain knowledge. As shown in Figure 4–3, we plan to first parse each HTML-
document in order to extract as much information as possible, aiming at
automatically extracting proper concepts and relations of high quality. Rules
should assist the selection of concepts that describe the knowledge of the
documents and their sections, and help identify relations among the concepts. DM
is incrementally built as documents are exposed to analysis, but since it is regarded
a difficult task to determine the meaning of a Web page reliably [Perkowitz+00],
one might assume the results to be far from perfect. Somewhat similar to ITS,
whose modelling concern how a domain expert would represent the knowledge to
be taught to the learner [Beck+96], manual evaluation and adjustment from
someone skilled in the domain is probably needed in order to perfect the DM. For
our approach the interesting question is whether we can realise a domain model
without asking too much of the author.

4.5.2 User modelling

By monitoring the user during interaction a conceptual user model that represents
the user knowledge in terms of concepts is incrementally built. This information
reflects which concepts the system believes the user presently knows. In ITS, one
way to represent student models is through an overlay model [Beck+96]. The same
assumption is made in our system so that the knowledge of the student is regarded

Figure 4–3: The process of making a domain model is semi-automatical, which means an
expert should evaluate the proposed model and adjust it manually.

31

a subset of that of the expert, illustrated in Figure 4–4. We note that due to student
misconceptions such a model may be imperfect.

4.5.3 Generating adaptive presentations

For adaptation to take place, the system needs to modify documents so that they
allow for the present knowledge of each user based on information about what the
user already knows. The system could perform a real-time analysis of the contents
of the document requested for, but there are two problems to overcome. First,
going through the processes of parsing, conceptualising and building a network
representation again would likely result in an imperfect temporal representation of
that document. Secondly, as mentioned before, it is expensive to perform such an
analysis in a real-time environment and requiring the user to wait too long would
be unacceptable. As a solution, adaptive documents of high quality can be
generated simply by comparing the incomplete user model to the perfect domain
model. Given that the domain has been analysed in advance, this approach is both
inexpensive and flexible. Each presentation would therefore consist of information
represented by the concepts selected by the system, accounting for individual
preferences of the users. Hence in order to bridge the gap of knowledge, the system
would need to reason on which concepts the user has insufficient expertise and

Figure 4–4: The user model is a subset of the domain model.

32

tailor adaptive documents with the required information. The steps of this process
is visualised in Figure 4–5.

Figure 4–5: Adaptive generations are based on both DM and UM.

33

5 IT’S ALL ABOUT
MODELS

De Bra et. al outline that an AHS should perform its tasks without requiring any
sort of programming by the authors [De Bra+99]. Therefore, the first task towards
adaptive behaviour is for the system to learn the content of a domain. Section 5.1
investigates how to develop suitable methods for extracting information from the
domain sources in an hypertext context. Next, in section 5.2 we find that Heuristics
can ensure quality to the process of abstracting concepts, and we try to identify
relations among the concepts found. From this basis, section 5.3 raises issues on
how a knowledge representation of the domain can be constructed and how the
generation of adaptive documents for each user can be fulfilled.

5.1 Extracting information

It is important to separate the information gathering from the information
processing. According to the overall plan outlined in the previous chapter, a crucial
step towards a domain model concerns the identification and modelling of the
content of each document. After stating the hypothesis of our work, this section
discusses the nature of concepts. Also, generic document characteristics and proper
techniques for extracting candidate concepts are identified.

5.1.1 Hypothesis of this thesis

As mentioned in the introduction, some models might represent the domain
knowledge better than others, and as models play important roles in adaptive
systems, the performance of the system depends on the quality of the models.
Figure 5–1 illustrates the different roles played in the adaptive system explaining
the notion of high quality: The author has a mental model of some knowledge, and
expresses this knowledge as HTML documents. During analysis of the static
documents, the adaptive hypertext system tries to generate a domain model which
agrees with the author’s view of the domain. The domain model and the user
models make up the basis from which the system can generate documents adapted
to each user. Since the adaptation depends highly on the content and structure of
the domain model, we therefore choose to focus on ensuring high quality to the
semi-automatic construction of the domain model, and thereafter use the methods
found to build an adaptive hypertext system. Remember from the introductory part
that with high quality we mean that the system should capture the domain

34

knowledge well with respect to concepts and relations, so that the domain model is
in accordance with the author’s view of the domain.

We hypothesise that the combination of Information Retrieval (IR) techniques and
an analysis of document properties and hypertext structure, yields a means to both
find and use Heuristical rules for the identification of concepts and relations, and to
ensure a resulting domain model of high quality for an adaptive hypertext system.

5.1.2 Some possible approaches

How can the content of the documents be abstracted? One way is to require that
each document should be structured in a specific manner and tagged with respect
to content. Knowing exactly how the documents look like, the adaptive hypertext
system can be programmed to perform powerful adaptations. This is clearly a very
inflexible approach in that it places a heavy load on the author in the tagging phase.
It also conflicts goals of using existing HTML documents as easily as possible, as
exemplified in the system KN-AHS, which compose documents based on
knowledge about with which hotwords the user is familiar [Kobsa+94]. The
hotwords are designed to fit the system in advance of interaction. Systems that

Figure 5–1: The concept of high quality explained in terms of the actors.

Table 5–1: Main hypothesis

The combination of IR-techniques and an analysis of document
properties and hypertext structure with respect to content, yields
Heuristics that secure the production of an AHS domain model of
high quality.

35

manage personalised views of information spaces extend the notion of classical IR-
hypermedia systems by not only locating but also organising the information in a
way the user wants [Brusilovsky01]. However, running traditional IR-analysis on
the documents with vectors representing each section in a document, the adaptive
information could be presented by comparing the vector-representation of the
document requested for with the user’s knowledge represented in a similar vector
space. Marinilli et. al propose a case based approach to information filtering that
presents HTML documents according to the interests of the users. A filtering
component selects relevant documents for each user by means of a vector model.
After exposing a text document to stoplist, weighting and separation of words, the
resulting array of values (one value for each category) is mapped into stereotypes
[Marinilli+99]. Before bringing our approach to light, we refresh on HTML.

5.1.3 What is HTML?

According to the specifications of the World Wide Web Consortium (W3C),
HTML (Hyper Text Markup Language) “is the lingua franca for publishing text on
the web” [w3]. It is essentially a subset of SGML, but even though a much less
complexity in HTML, the language usually offers authors enough flexibility. An
HTML-document may consist of elements like text, tables, graphics, sound etc.,
and these elements are marked up by means of tags. As HTML is fairly easy to
learn, anyone can make, structure and format their own Internet pages. The
documents may be created either by writing tags and text directly into an HTML-
editor or by converting an existing formatted text-document to an HTML-

document. In the latter case, a standard text-editor1 uses advanced techniques like

style sheets and the like to extend the expressive power of the HTML-language2

and make an HTML-document look as similar as possible compared to the original
document. A complicating characteristic with such automatic conversion, is that
the source of the resulting HTML-document is very difficult to read and edit for a
person due to much redundant coding from the automatic process. Programs to
“clean up” such auto-generated code, or bad programmed documents, exist,

however3.

An HTML document consists of a header section with meta information and a
body section with the text and graphics presented on the screen. The tags mark up
the text, so if the author of a document wishes to make a piece of it appear in bold,
 and tags mark where the bold face-formatting should start and end,
respectively. The tags are present in the HTML-file, but only the interpreted result
is displayed on the screen by the browser. More advanced features like XML,
stylists, Javascript, Java applets and the like can be embedded as necessary to
further format and add functionality to the documents.

1. Text editors range from simple to more complex ones, e.g. Notepad, Microsoft Word,
Lotus AmiPro, FrameMaker, etc.

2. DTDs and style sheets redefines the standard formatting provided by the tags.
3. The program “Tidy” for Unix is an example of a program that fixes incorrectly tagged

documents.

36

5.1.4 Using tags in the conceptualization process

Brusilovsky emphasises that adaptivity requires knowledge about links and
documents, where the documents must be indexed according to the user's goals,
knowledge and background [Brusilovsky01]. The process of conceptualization
tries to abstract the information of a domain and associate descriptive concepts
with this information. For an AHS there is a need to separate the information
entities and understand their relative importance as knowledge sources for the user.
We therefore question how to identify and conceptualise each chunk of knowledge
before constructing the domain model.

There are two interesting observations concerning the nature of online material.
First, with the ability to link different documents the author can make a more
natural decomposition of large documents into smaller ones, so that the size of an
HTML document is on the average relatively small, often limited to knowledge
sources dealing with a specific subject. Secondly, writing and formatting a
document normally involves emphasising important words, structuring the text
through paragraphs, setting up links to related documents, summarising
information in tables and bulleted lists, and perhaps of most importance: using
descriptive headings. The purpose of formatting is to improve readability and the
user’s understanding of the content, and from this we can advantage when aiming
for an AHS. Assuming that most concepts, conceptual structures and domain
specific terminology appear in the documents of the domain, it should be
promising to acquire knowledge from the corresponding nodes [Kietz+00]. Figure
5–2 illustrates how an HTML document is divided into different elements, or
sections, in terms of content and presentational form.

In adaptive hypermedia systems, concepts are used both in the domain model and
throughout user interaction, and are essential to the system since they are the clues
that point to the specific knowledge sources. Davis et. al argues that it is important
that a knowledge representation acts well as a medium of communication and
expression [Davis+93]. The conceptualization can be fulfilled by picking out the

Figure 5–2: Example of HTML documents as they appear for the user on screen,
illustrating how the author might organise content into different elements.

37

most promising keyword terms from the elements, and concepts can be labelled in
a way understandable by a person by using the keywords abstracted. This method
therefore agrees with the demand to simplify the manual evaluation and adjustment
from a domain expert and facilitates the author’s interaction with the domain
model. Moreover, users can better control the content of their user models by
simply looking at the concept label and sort out which concepts seem familiar or
not. In their simplest form, concepts would consist of only one keyword term. By
permitting several concurrent terms, or phrases like “Saying the right thing at the
right time” when labelling the conceptual states, the problem of how to compare
different concepts arises. On the other hand, if several independent terms are
allowed for the concept, similarity measures can be applied. Finally, notice the
possible ambiguity in that a term can have different meanings in distinct contexts.

De Bra et. al distinguish three kinds of concepts. Atomic concepts are the smallest
information units, pages are composed of atomic concepts, and abstract concepts
represent larger units of information [De Bra+99]. In a similar fashion, we assume
that regarding content, documents are likely to have a context superior to its
sections, and likewise, some documents might be superior to other documents. We
therefore find it convenient to separate document concepts from element concepts
in the process of building a domain model.

5.1.5 Importance of the elements

Since the formatting tags are included along with the content in the HTML-files,
the system can easily search for concepts in elements regarded important. A tag is
embraced in brackets and has a name, but not all tags need to be closed, that is, no
end-tag is needed to mark the end of the element in order for the browser to
interpret the page correctly. Most tags have some optional attributes that can be
assigned values specifying the purpose or layout of elements. Table 5–2 presents
the most commonly used tags.

Even though different tags are designed for different purposes in HTML, the
author is free to use the tags for other purposes, like layout. There is no guarantee

that tags are used coherently among different domains or even within a domain.1

Particularly, in their survey of the history of hypertext, Ashman et. al call attention
to studies which have shown that the set of links varies a lot from author to author
[Ashman+99].

The diversity of the use of tags complicates the process of selecting which
elements are the best indicators of concepts and choosing the correct level of
abstraction. In order to extract the meaning from a document based on its elements,
we need to find out and analyse how the average author has used tags to mark up
documents, or in other words, identify what are the most important tags in terms of
conceptualization for a randomly picked document. As expected, this task is
complicated. Therefore, and due to the limited scope of this thesis, the following

1. XML (eXtended Markup Language) is designed with coherence in mind, but since the
vast majority of the documents on the web today is HTML-documents, we have chosen
to stick to HTML in this research.

38

discussion is based on a small set of empirical data focusing on the ideal use of
tags, the different roles the elements play and potential traps when it comes to
extracting concepts based on the elements.

Meta elements contain information about a document, hidden for the visitor but
usable for spiders helping search engines to index Web documents. The three most
important meta tags are the description meta tag, the keyword meta tag and the title
meta tag. The last one is most commonly used and should identify the content of
the document in a fairly wide context. Since the title is a property of the document
and not part of the text presented to the user, it can and often is used to label the
browser window. Its value is also default as descriptor for both browser history and

Table 5–2 The most commonly used HTML-tags

Tag
name

Short description Notes End

<HTML> Language used is HTML The document is embraced by this tag No

<HEAD> Header information Not visible to the user, only to the browser Yes

<TITLE> A descriptive title of the document Often used to label the browser window Yes

<META> Main purpose is to guide search
engines during indexing

The attributes are identified by search engines No

<BODY> Indicates the start of the visible
portion of a page

Everything contained within the document body is
visible to the user

No

<H1> Heading level 1 Largest font size of the six headings Yes

<H6> Heading level 6 Smallest font size of the six headings Yes

 Unordered list of LI-elements Can be nested Yes

 Ordered list of LI-elements Can be nested Yes

 List element Each LI forces a new line No

, <I> Emphasise and Italic, respectively The tag usually appears as italic Yes

, <U> Bold and Underline, respectively <U> should not be confused with links Yes

 Provides font formatting Additional attributes specify size/color Yes

<P> Denotes a paragraph Inserts an empty space before and after No

<TABLE> Has rows <TR> and columns <TD> A table cell can hold any element including another
table

Yes

 Inserts an image in the document. A
description is shown in case the
browser has turned images off

<IMG SRC=”name” ALT=”descriptive text goes
here”>

No

<!-- --> Comment Not interpreted by the browser Yes

<SCRIPT> Embeds a script of a specified type Scripts can be stored in external files Yes

<A HREF>

Link, i.e. hyper reference links to the document with the url
specified
 creates a target location
somewhere within a document that can be linked to
 links to a specific
location inside a document

Yes

 Line break Inserts a carriage return. No spacing No

<DIV> Element used for special purposes Often contains a class definition Yes

39

bookmarked favourite sites. Short and descriptive titles should be used, but there is
no guarantee the same title is not used throughout the domain. In general, a
drawback in the adaptive setting yields that meta information in the worst case
could be equal for every document in a domain. Even worse, this often happens to
be true. When creating a bunch of documents an efficient technique is to make a
template document with only the structure or form, this acting as the basis for
constructing the domain documents in order to ensure the same layout and local
structure. Meta information is not visible to the user and the author might therefore
more easily forget to change it according to the content of each document.

Headings serve the purpose of describing the content of the sections to follow.
Hence headings alone are powerful sources of identifying keywords connected to
the distinct elements and the document as a whole. Headings are ordered according
to levels ranging from <H1> to <H6>, and by default the font size of <H1> is
larger than <H2>, which is larger than <H3> etc., so a natural assumption to make
is that the structure of the document agrees with the intended tree-like ordering
provided by the HTML specification.

Tags like , <I>, , <U>, <CITE> and are designed to
emphasise text. They often occur inside other elements, and hence serve two
purposes: both to outline important keywords or even whole sentences, and to
make the text more structured and readable. Even though promising, note that there
is no guarantee that emphasizers are used properly or hold important words
representative for their parent elements.

Among indicators of intended groupings are ordered and unordered lists,
designated with and respectively. Lists consist of several
elements. There is a possibility of nesting lists, that is a element may actually
be replaced by a new list. Another commonly used element for grouping
information into paragraphs, is the <P> tag, popular in most documents since it is
the easiest way to embody perceived open spaces between textual elements. Other
groupings of text are provided by block quotes and tables. The latter is both an
interesting and complex matter. <TABLE> can be used to group other HTML
elements, summarise information, or even for layout purposes. Many efforts have
tried to extract or categorise information into e.g. databases based on analysing
table content like in [Cohen00]. It is difficult for the system to find out what
purpose a table serves, and hence an analysis of the information exhibited is not
too promising.

<A HREF> is the tag indicating a hyper reference, or link, to (somewhere in) a
document. Links provide a means to connect related documents, allowing the user
to quickly manoeuvre the hyperspace from one place to another. The power of a
link is that it can point to anything. Without links, the flexibility of the web
disappears. Many styleguides recommend that the text embraced by the link tag
should be descriptive of what it is linking to [Berners-Lee95], that is qualified with
a clue like “a step-by-step tutorial” rather than “click here”, to allow some people
to skip it. What does a link mean to different people? If used properly, even people
jumping in on a page from outside the present context would be able to decide
whether to explore the link or not. Among common problems are documents

40

overcrowded with links, and broken links, i.e. links pointing to another destination
than intended or to a non-existing destination.

Finally, images should not be forgotten. The phrase “an image says more than a
thousand words” is one reason why the web is filled with illustrations. Another
reason is that images provide interactive experiences for the user, either as static
images or as clickable image maps. The tag has an optional ALT attribute
that should hold a short textual description of the image. Until recently, this
property was needed and widely used since many users instructed their browsers to
not show images due to low transfer rates, and authors therefore embedded
descriptions in order to allow the users to consider explicitly requesting for the
image. Despite increased transfer rates, the ALT-attribute is still widely used today
since most browsers show its description whenever the mouse passes over the
image. Moreover, images are useful to spice up the content, or for summarising
important and difficult subjects in a document. The most commonly used graphical
format is jpg- and gif-images.

From the perspective of a the browser software, its task is to interpret the tags in
the HTML document in order to present a formatted page to the user. It is our
belief that the adaptive hypertext system can make use of the very same tags in
order to choose the elements that are important to conceptualise, as illustrated in
Figure 5–3. The task to follow concerns how to extract as much information as
possible in order to lay the grounds for ensuring quality to the selection of final
concepts.

Figure 5–3: Some tags indicate which elements are important to conceptualise, while others
assist in the process of conceptualization.

41

5.1.6 Using IR-techniques within important
elements

After identifying important features of the elements above, we need methods to
further analyse them in order to extract possible concepts. In the field of
Information Retrieval (IR), the main goal deals with automated classification and
retrieval of unstructured documents [Frakes+92]. IR-techniques such as lexical
analysis, stoplists and stemming provide a way to identify the words of each
document with high discrimination values, thus forming the basis of building an

index. When a query1 is being executed the most relevant document(s) matching
the query can be retrieved.

An IR system seems useless as an adaptive hypertext system since it provides little
or no understanding of document quality [Berners-Lee96]. The basic IR-
techniques, however, may assist in the adaptive hypertext system, since what is
needed in the conceptualization phase is a proposal of important keywords. That is
the concept candidates are partly a result of a statistical IR-analysis, whereas the
selection of final concepts is made by a more intelligently reasoning upon the
candidates.

Lexical analysis is the process of transforming a stream of characters into a list of
lower case words or tokens, by removing any character that is not a letter nor a
digit. This implies that an HTML-document passing through lexical analysis
would loose its brackets around the tags, as the brackets are non-letter characters.
Clearly the adaptive system would fail if this important information were lost.
Performing the IR-analysis on the text embraced with interesting elements only
(not the entire HTML-document) solves this problem.

Frequent occurring words2 from the spoken language have no indexing value.
The use of a stoplist may reduce the number of words since stopwords typically
account for 20-30 percent of the tokens in an average document. In the stoplist
process, every word from the text is checked against the stoplist and eliminated if
found there, thus the survivors are more likely to be of importance.

Stemming is the automatic fusion of term variants, so that after stemming the
terms “concerned”, “concerning” and “concerns” all get conflated into the stem
“concern”. Although stemming may reduce the size of an index by as much as
50%, some information about the terms going through stemming is clearly lost.
The Porter-algorithm is a well-known and fairly small implementation of
stemming [Frakes+92].

For instance, we performed a test (using the basic IR-techniques) on an element
from a randomly picked HTML-document. The results showed that after being

1. If the user wants to find information on the Internet about a subject, he/she needs to
formulate a (boolean) query consisting of key terms.

2. Van Rijsbergen have developed a stoplist of 250 words that is widely used in IR-
analysis [Frakes+92]. Common words occurring in many documents may be for
example “time”, “any”, “all”, “into”, “very”, “asking”, “where” etc.

42

exposed to lexical analysis and stoplist only 133 out of 290 terms remained (i.e.
46% of the total number). Removing duplicates before stemming lead to a
resulting 96 terms (i.e. 33% of the total number), while removing duplicates after
stemming reduced the text to 87 terms (i.e. 30% of the total number). Even though
about 70% compression was obtained after IR-analysis, the test indicated that these
procedures alone were not enough to fully extract a few concepts describing the
element. The problem is that one paragraph alone is likely to produce far to many
potential competing concepts. A more exhaustive approach is needed.

5.1.7 Domain specific list

A concept of an element could be represented by a vector of all the terms in the
element accounting for all the terms in the domain. The conceptual space would
then consist of many different vectors so that similar elements would have quite
similar vector representations. The alternative approach implemented in this
research uses human knowledge to ensure quality with respect to the
conceptualization. If the author of a domain wants to prepare a collection of
documents for the adaptive system, one might require that the first thing to do is
constructing a domain-specific list with keywords regarded as being indicators of

concepts or important paragraphs of text. Using such a domain specific list1 or
DSL actively when analysing each document, would help the system to identify
possible concepts and important elements and later help in building relations
among the concepts proposed. As an example, say that the term “star” is listed in

the domain specific list2 and also found in an element. Then the system could
select the word “star” as one strong concept candidate for that element or for the
document as a whole. Note that constructing a DSL needs only to be done once for
each domain.

The performance of the adaptive hypertext system is related to both the quality and
complexity of the DSL, since the idea is for the system to actively be using the list
in the process of conceptualising the documents. Obviously the content and size of
the DSL would influence the selection of concepts. A thoroughly considered list
would therefore increase performance, and, from the view of the end user, make
the system act more intelligently. Furthermore, using not only one, but several
different lists should add flexibility to the system. Remember the DSL is not only
of value before extracting information, but also when monitoring the user and
adapting documents on the fly. The influence of several lists is best illustrated in an
educational setting where the level of knowledge may vary significant among
students due to a variation in individual skills and related knowledge obtained from
prior courses. If the students were allowed to modify their own DSL and the
system could use lists from related courses, the goal of a presentation tailored to

each user seems much closer 3.

1. The domain specific list can be thought of as an “anti-stop list”, that is a list acting
directly opposite to the IR stoplist method.

2. Allowing for more than one DSL yields a flexible facility to the adaptive hypertext
system

3. This is necessary in the case of documents being analysed on the fly. In our approach,
we intend to perform the analysis in advance of the user interaction.

43

Making models explicit to the system adds both flexibility and system performance
with respect to intelligence. The system KN-AHS does not integrate the user-
modelling component BGP-MS into the application. This leads to adaptivity in the
following senses: many types of information about the user can be represented
simultaneously, the user-modelling component can receive and answer questions,
and accumulation of knowledge takes place more naturally [Kobsa+94].
Embedding the domain specific list in the domain model should help during the
analysis of documents. Using the DSL therefore yields a simple technique that
strengthens the strategy of conceptualising a document based on the contents of its
elements.

5.1.8 Other ways to extract information

Term frequencies (TF) can be used in order to extract concepts [Kietz+00], based
on the assumption that terms that occur often, with the exception of stopwords, are
of importance. After counting the TF, the resulting information can be sorted so
that the most frequent occurring term (TFmax), or all terms with a higher TF than a
given threshold (TFtreshold) can be listed.

So far we have found that a domain consists of different documents linked
together, each of which has different elements, and we know some simple
techniques that can be used to gain statistical information of the text. Keeping this
in mind, the work continues on the development of a strategy to guide the
conceptualization.

5.2 A domain model in the horizon

It seems convenient to represent the domain knowledge in terms of concepts and
relations among the concepts. Before we explore how to build a domain model in
the next section, we formalise the notation of the information as provided by the
techniques introduced in the previous, and develop Heuristical rules in order to
select the most promising concepts and relations. The rules are the backbone of the
construction of the model which in turn is quite critical concerning the system’s
ability to perform adaptations. The following discussion is therefore essential to
our work.

5.2.1 The sets of candidate concepts

From the discussion in section 5.1.5 “Importance of the elements”, page 37, we see
that those elements classified as “important” serve various purposes for both the
user and the author. Due to this variety, the system needs to take action according
to rules in order to extract concepts. These rules should account for as many
aspects as possible, both the global ones concerning the document as a whole, as
well as the local ones, like document subsections. Keeping the rules in a rule base
yields both power and flexibility to the process of analysing HTML-documents.

44

New rules may be easily added to the base without affecting other modules of the
system. An appealing strategy is to parse each document looking for important
elements, extract the information within, and finally, in the search for concepts,
analyse it according to rules.

Each method m used on an element i, produces a set Sim consisting of n candidate
concept terms cj when run on an important element, i.e. Sim = {c1, c2, ..., cn}.
Therefore we refer to the techniques as information sources from now on. A brief
summary of the functionality of each information source is listed in Table 5–3.

Each method produces different sets of terms that all can be more or less suitable
as a concept describing the element. In order to visualise, regard the following
rather simple element written in HTML:

• <P>Our solar system is only one of millions of
other solar systems. It consists of nine
planets, of which the earth is the only one with
developed life </P>

Assume a domain specific list (DSL) holding the three terms “Pluto”, “Mars” and
“Earth” and a term frequency threshold set to two terms. The list below illustrates
the different sets of terms originating from the different information sources.
Notice that the terms from the element are stemmed, as are those in the DSL.
Finally, since the element is surrounded by a paragraph-tag, we label the sets with a
leading “P”. The meaning of the first item in the list is that the set S of terms from
element P when exposed to Lexical Analysis, are “solar”, “system” etc.

• SP LA = {solar, system, million, consist, nine, planet, tellu, earth, develop, life}
• SP DSL = {earth}
• SP TF = {solar, system}
• SP Emp = {planet}

Note that with this notation, it is easy to picture different sets and how their
members influence each other.

Table 5–3: Functionalities of the information sources

Method /
Abbreviation

Information source Functionality

LA Lexical analysis Converts the stream of characters in an element to
a list of terms, where stopwords are removed

DSL Domain specific list Identifies terms from the element that match
terms in a domain specific list

TF Term frequency Counts number of occurrences for each term in an
element

Emp Emphasizer
identification

Lists terms in emphasised elements that occur
within an element

45

5.2.2 Values separate the candidates

For an element, the task for the adaptive system is to choose the best concept from
the set of all information sources, that is the concept must be chosen from Ci = ∑m
∪ Sim Notice that the set notion is also true for the whole document, i.e CDOC is a
valid set just as CTABLE, CIMG and CP are valid sets. Apart from image and link
elements, all elements that go through lexical analysis (and stopword removal,
both denoted by LA) have a potentially large set Si LA. The more the number of
competing terms, the more difficult the process of ensuring quality to the final
selection. Inspired by Sharma, who outlines the power of a strong Heuristics model
for developing a user model in the absence of well known methods [Sharma01],
we apply a straightforward approach to the conceptualization process of the
document and/or each element by adding values to each candidate from Celement
based on Heuristical rules. The most important terms can be distinguished from the
less important ones simply by judging the final numeric values summed up from
all Heuristics, so after all Heuristics have done their job, a set of candidates ci
ordered by value is the result, where the value of c1 ≥ c2 ≥ c3 etc. To exemplify, say
the system produced the candidates “sun”, “rain”, “day” and “wind” for an
element, where the candidates had values of 14, 12, 9 and 3, respectively. Then the
matter of selecting the concept is simply finding the head of the ordered list, which
means that “sun” becomes the concept. The tail of the original list hosts all the
candidates that were not selected.

Let us stress the definition of the word value. A value is associated with each
Heuristic. The terms take on these values as the Heuristics fire, so after the process
of analysing an element, all the element terms have various scores. In other words,
the score of a term is the total of all values added to the term. As an example, say
that the following values are associated with three of the Heuristics:

• HeuristicA: positive value of 3
• HeuristicB: positive value of 8
• HeuristicC: negative value of -4

Table 5–4 illustrates the difference between the values of the Heuristics and the
total score. Note that the values are fixed, and are used to add up the score of a
term. From now on, we refer to the present score of a term as its present value.

Table 5–4: The values as assigned by the Heuristics and the total scores held by the terms

Terms HeuristicA HeuristicB HeuristicC
Total
score

agent Yes No No 3

user No Yes Yes 4

model Yes Yes No 11

46

The following discussion on Heuristics debates how to choose the correct level of
abstraction and explores how to guide the process of adding appropriate values to
the candidate concepts.

5.2.3 Their fate is in the hands of Heuristics

Three groups of Heuristics were identified. The Heuristics for important elements
are listed in Table 5–5 followed by those that focus on aspects for the document as
a whole in Table 5–7. An interesting discussion concerning the roles of the
elements in total leads to the Heuristics described in Table 5–8.

Consider a fictional piece of text explaining user models with a section debating
user model acquisition. Within this text the formatted string (written in HTML)
Explicit models gather information by prompting the
user contains the emphasised word “explicit”. The author would prefer the term
“acquisition” as the proposed concept, however, so the system needs to account for
more than the “emphasizer” Heuristic. Furthermore, when creating the DSL, the
author might browse quickly through the pages looking for keywords from
headings and emphasizers as a help to create the domain specific list. Higher
values should therefore be added to concepts suggested by Si DSL than those in
other sets, as stated in the first group of Heuristics below.

Interestingly, Si TF might be quite similar for many documents, if the frequently
occurring terms of one document also has a frequent appearance in others. In order
to reduce this problem, terms that occur often in many documents could be
punished by using a collection frequency and normalising the set [Kietz+00].
Additionally, through the use of stemming the figures are further incremented
since terms with the same stem count twice.

Notice the complementary nature of the sets as illustrated in Table 5–6. When their
elements coincide, the respective values summed up thus far are incremented or
decremented according to Heuristics. The total value, or score of a concept c in the
set Celement is therefore the sum of the values calculated from one or more

Table 5–5: Some Heuristics used for important elements

HC-1 Terms stated explicitly by some domain expert are very
likely to be among the most useful concepts, a fact that suggests
assigning high values to members of Si DSL

HC-2 The more a term occurs, the more important it is. The set Si

TF results from counting term frequencies in Si LA. Assigning each c
with values relative to these frequencies therefore seems promising.

HC-3 Members from Si Emp can provide quality for the system in
the selection process. Even though the author decides selectively
which words to emphasise, emphasizers are not always used
properly, and therefore the value should not be too dominant.

47

Heuristical rules, so e.g. if Si LA = {c1, c2, c3, c4, c5, c6, c7, c8}, the score of c5 is
the sum of values defined by Heuristics HC-1 and HC-3.

The second group of Heuristics focus on aspects for the document as a whole.
Since the document can be considered as an element containing children elements
(subordinate elements), the information sources (DSL, TF, LA) are valuable and
the Heuristics from Table 5–5 can be applied. In addition, the ones listed in Table
5–7 are important contributors to the quality of the Conceptualization of a
document.

Despite the potential quality provided through meta information and the title
element, these sources could in the worst case be equal for every document in a
domain, and often is, as noted in the discussion in section 5.1.5 “Importance of the
elements”, page 37, thus misleading the system to choose the same concept for
every document. The solution is straightforward and involves comparing meta
information in every document with that information found this far. If two
documents have the same meta information, then Heuristic HC-4 is cancelled for
these documents.

Two very interesting features are implicitly contained in Heuristic HC-5. First, if a
candidate concept recurs in several different elements within a document, it is
likely to be an important keyword for the entire text. Due to the different roles of
the elements, their respective candidates should not count equally in the process of
adding up values. In particular, headings at the highest level (normally <H1>)
should have higher priority than lower level headings, tables and lists. The second
feature e.g. reveals the dual role of external hyper references, i.e. links to other

Table 5–6: The complementary role of the Heuristics

Set name Set content Associated Heuristic

Si DSL {c2, c5} HC-1

Si TF {c1, c4, c6, c7, c8} HC-2

Si Emp {c3, c5, c6} HC-3

Table 5–7: Some Heuristics used for the entire document

HC-4 Meta information and the title element ensure quality to the
selection since their content most likely are considered thoroughly
from the author’s side. Relatively high values can therefore be
applied in such cases.

HC-5 A value that reflects the characteristics of the element in
which a term lives, should be added to the score. The type of
element where a candidate concept occurs matters in the selection
process, that is some elements are more important than others.

HC-6 If a document d is pointed to from another document in the
domain, the description of the link element in d should be assigned
a very high value, based on the assumption that hyper references are
of value for the conceptualization of future documents.

48

documents. As noted in section 5.1.5, the text embraced by the link tag <A HREF>
is often (or at least should be) qualified with a clue indicating what it is pointing to,
rather than the often used printing block “click here”. Hence, one of the terms in
the clue is very likely to be a concept (or at least a very strong candidate concept)
of the document pointed to by the link. The same term is simultaneously

destructive as a candidate for the document at hand1. In other words, candidates
from hyper reference elements should not be accumulated to the set Cdoc when
searching for a document concept, but should be saved for future use, that is only
candidates from hyper references pointing to the present document should be
accumulated to Cdoc. Heuristic HC-6 therefore has the implicit assumption that all
links in the domain are known in advance of the conceptualization of documents,
are represented somewhere (e.g. a matrix or a file) and are used throughout the
analysis.

As an example of how Heuristic HC-6 works, assume that the hyper reference user appears in “file1.html”. Then the term user
is very likely to be the concept of the document “file3.html”, but it should not be
the concept of “file1.html”. A high value is added to the score of occurrences of
user in “file3.html”, and a low value to occurrences of user in “file1.html”.

It is interesting to question which rules should fire, that is, are all sets of equal
relevance, or should some be omitted under certain conditions? Do the different
element types influence the final outcome? Obviously there is a possible conflict
between the conceptualization of a document and its elements. By treating the
document as one big element enclosed by the <HTML> and </HTML> tags, we
see that all sets Celement from a document is contained in Cdoc but the reverse does
not hold, as illustrated in Figure 5–4. The candidate concepts appear as black dots.

Why is this observation so important? Remember the purpose of the concepts -
they should act as descriptors of the content of each particular knowledge source in
the domain, providing a basis for building the domain model. Furthermore the

1. Two documents should not have the same concept according to the requirements of the
domain model, but as will be explained in Heuristic HC-7, different sections of a
document might very well have the same concept due to their complementary roles.

Figure 5–4: Candidate concepts of a document belong to different sets

49

division into document concepts and element concepts was based on the need to
acquire knowledge sources at different levels in the adaptation phase. In other
words, element concepts should differ from document concepts in order to prevent
overlapping information, thus ensuring a better domain model. This conflict is not
unique. What happens if the same conceptual description is found for elements of
distinct types? Heuristics that solve such problems are listed in Table 5–8 below.
Note that most of these Heuristics don’t hand out values as did the previous ones
(except Heuristic HC-8).

Brusilovsky points out that an adaptive system can choose different types of media
with which to present information to the user, according to what is most relevant at
the given node (i.e. document) [Brusilovsky01]. Accounting for the fact that
different elements act as complementary sources of information for the user
provides a means for the system to add variety to the presentation based on context
and user preferences, so Heuristic HC-7 suggests that similar conceptual
descriptions should be accepted only when the element types differ. Note that this
applies for whole documents as well (remember the document-as-HTML-element
view), so two documents should not be assigned the same concept. When it comes
to the future adaptive generations, the system would be better off if it for elements
that equal in terms of both type and proposed conceptual description, tries with
another concept. Similarly, candidates that equal the document concept found
should not be considered when searching for concepts in the important elements,
since they provide no new information to the system. Heuristic HC-8 therefore
implies that the search for document concepts should precede that of element
concepts, a statement consistent with its fellow Heuristic HC-11.

Heuristic HC-9 claims that the level of abstraction may vary. Moreover, headings
should not be regarded as stand-alone elements, as they indicate the start of a new
section in the document and are likely to reflect its content well. The scope of a

Table 5–8: Some Heuristics used for the ensemble of elements in a document

HC-7 In case the same concept is proposed for two distinct
element types, the system can perform more powerful adaptations
based on user preferences. Presentational form matters in the
adaptive phase, so information on the element types should be
preserved.

HC-8 Candidates that equal the document concept found should
not be considered when searching for concepts in important
elements. In order to prevent their influence, such candidates could
be assigned large negative values.

HC-9 The level of abstraction can vary for different documents.
Headings indicate the start of new sections and are likely to describe
the content that follows.

HC-10 Lists, images and tables should always be considered as
single units since they provide variation in the document and often
act as complementary sources of information for the surrounding
text.

HC-11 Since some elements might be superfluous, an analysis of
the document structure should precede that of the elements.

50

header includes all elements from below it to the next heading at the same level.
The problem of choosing the correct granularity concerns which information
entities should be regarded as atomic. In the eyes of a natural language expert, the
task is to mine text from each sentence. For the adaptive hypertext system, the
attempt is to represent the knowledge of a domain in terms of a conceptual domain
model: as indicated so far, each document and the different elements are subject to

this conceptualization. Some documents are larger than others1, but if well
structured, e.g. assuming a proper use of headings cf. section 5.1.5, the system
could try to bring the process of conceptualization to a more fine-grained level. In
particular, an examination of which header tags are used should reveal how many
levels of the concept hierarchy a single document covers.

Heuristic HC-10 outlines the importance for images, lists and tables to be
considered as single units. For instance, in order to conceptualise list elements
(or), it is important to understand how they are used in the document.
First, a list can be considered as one entity which implies finding one good
candidate concept is desirable. Secondly, an analysis of the content of each
element in a list is somewhat more complex, but provides a means to identify
relations between global list concepts and sub concepts within the list. Obviously,
if the document only has one element, namely one big list, important information
would get lost if the individual elements were never subject to further
analysis. On the other hand, the resulting document representation could get far too
complex if all list elements in addition to other elements were analysed. The
important and difficult task here is to choose the appropriate level according to the
overall document structure. Similar considerations apply for table elements.
Finally, due to their value for the user and interactivity, images would probably
denote important concepts either for the document or for elements depending of
where they occur. The problem of how to conceptualise an image, can be solved by
looking in the ALT attribute or using the filename of the image.

A summary of the above discussion is exemplified in Figure 5–5. The conceptual
descriptions ki are document concepts (squares) and element concepts (circles)
representing the document and elements of the illustrated types - images, tables,
text and lists. Agreeing with Heuristic HC-7, we see that k2 represents both an
image and plain text. The same apply between documents: The system might very

1. An easy measure for size is file size (remember images are imported by reference in
HTML), another more demanding measure is by counting words.

51

well propose the same conceptual description k4 for the image element of one
document as for the table element of another.

5.2.4 Ensuring flexibility

In order to control the impact from the combination of the different Heuristics, the
respective values can be kept in a file and hence adjusted by the domain expert,
introducing a means to experiment empirically on the relative importance of the
rules. Making a value zero means preventing its rule from influencing the total
score of a term. An high negative value would mean that rule to block a candidate
from consideration, which would be desirable in cases like Heuristics HC-5 and
HC-8. Using ideas from the theory of neural networks (NN), in which values
(called weights in NN terminology) are adjusted over time by the system to change
performance and knowledge, the adaptive hypertext system could even find means
for adjusting the values itself e.g. by tracking the domain expert’s rejection of
concepts.

Due to the possibly erroneous outcome of the entire conceptualization process and
the future manual adjustment, it is important that the system retains all the
information found about every element. If a domain expert is dissatisfied with the
suggestions, the system can simply propose new promising concepts selected, and
it could even explain why it chose particular concepts by logging and displaying
the rules fired and their associated values. If the expert keeps on rejecting the
suggestions of the system, it could also, for each specific type of element, track
which information sources the expert seems to prefer, and further identify patterns
in order to modify or develop new heuristical rules, or the system could learn new

Figure 5–5: Conceptual representation of two documents. Note that an element from the first
and one from the second document have been assigned the same concept.

52

rules stated explicitly by the expert. This modification is possible only if the rules
are kept external to the system and if some sort of rule inference engine exists. In
time and throughout interaction, such a system would possibly improve its

performance. Hence the adaptation could be taken further to other levels1, but such
issues are outside the scope of this research.

In the above discussion we tried to choose a document concept and some element
concepts for each document. The selection tried to capture the best among several
candidates by adding values guided by Heuristics. Regardless of the outcome, the
result is a set of concepts describing the content or knowledge of the original
document and its parts. In other words, Kdoc = {k1, k2, ..., km} where the selected
concepts ki ∈ Cdoc ∪ Celement. The next task is to relate the concepts.

5.2.5 Relationship types

In this section there are two aims. First, we want to find a set R of directed
relations r of various types between the concepts in order to extend the knowledge
of the domain model, so Rdomain = ∑i ∪ ri where ri = (ko, kp, relationship_type).
This expression should be read “concept ko is ‘relationship_type’ to/by concept
kp”. Secondly, we want to discuss the possibilities for automatically extracting
these relations, ensuring quality to the process.

Along with all selected concepts, there is a set of candidates L (ordered by value)
that were not selected, i.e. ∀ ki ∃ Lki = {ca, cb, cc...}, where the value of ca ≥ cb ≥
cc etc. Repeating one of the examples used in the previous section, say the system
produced the candidates “sun”, “rain”, “day” and “wind” for an element, where the
candidates had values of 14, 12, 9 and 3, respectively. Then the head of the ordered
list is the concept selected, in other words “sun” becomes the concept of the
knowledge entity. The tail of the original list hosts all the candidates that were not
selected.

For stand-alone individual documents a representation of the knowledge in terms
of conceptual names may seem sufficient. However, for a collection of q
documents we reveal that in Kdomain = Kdoc_1 ∪ Kdoc_2 ∪ ... ∪ Kdoc_q, there
obviously are identical items and relations among the elements, reflected through
similar concepts and implicit conceptual relations. If we make a peek into the
adaptive phase of the interaction, the gap of knowledge in the user model can be
bridged by means of selecting appropriate concepts from the domain model and
present corresponding knowledge sources to the user. Without representing some
sort of connections or relations between the concepts (i.e. the nodes) in the domain
model, it is difficult to embody the process of selection in a thoroughly considered
plan for a sequence of adaptations.

Many types of relations can be identified in order to extend the domain model and
the adaptive performance of the system. In their AHAM system, Wu et. al use the

1. As noted in chapter 4 “Adaptivity”, page 19, a system that takes initiative to, proposes,
selects and executes the adaptation, is called self-adaptive [Malinowski+92].

53

prerequisite, inhibitor and part-of relations [Wu+01], which illustrate conceptual
dependencies in terms of adaptation. Before exploring the characteristics of
conceptual hierarchies and prerequisites, we introduce the discussion searching for
concepts that act as deeper explanations for others. Again we rely on the use of
Heuristics, this time for the identification of the different relationship types.

The system should be able to provide the user with many knowledge sources in
order to broaden the understanding of a subject. For the user, the most conspicuous
relationship type is clickable hyper references (links) provided by <A HREF> in
HTML, as they relate either documents, elements, or a combination. What does
such explicitly stated relations tell the user? Why does the user click on links after
all? Is there a reason for the author to embed hyper references in a document?

Heuristic HR-1 states that identifying links provides a means for the system to find
deeper explanations of a concept. First, links invite the user to move around in
hyperspace. Second, and of importance for deducing this Heuristic, they are
designed by the author and likely to point to information of relevance for the
present context. That is, the author invites the user to find more information by
following the links. Therefore, linked knowledge sources should be represented as
relations in the domain model through connecting the corresponding concepts with
the has_deeper_explanation relationship type, directed from the source to the
destination, so the set Rhas_deeper_explanation = ∑i ∪ ri , ri = (ko, kp,
has_deeper_explanation). Most likely, such relations would occur between
element concepts and document concepts, provided that most links exist within
important sections and point to documents. In particular, a link referring to
somewhere specific in another document (c.f. in
Table 5–2), indicates a conceptual relation between the element concept hosting
the link and the element it refers to.

Let us exemplify HR-1. The relation should be directed from the source of the link
to the destination. Assume that the link learn
more about agents has a source element whose concept is found to be
the term agent, and that the document “agentsmore.html” is conceptualised as
reactiv. Then the relation to be set up is:

• r = (agent, reactiv, has_deeper_explanation).

Instead of duplicating information that already exists elsewhere (outside the
domain), the author may choose to set up external links. Furthermore, as pointed
out by Heuristic HR-2, the external links are of less importance than the internal
ones discussed above, as their destinations are more likely to go beyond the scope

Table 5–9: Heuristics for finding deeper explanations

HR-1 Hyper references between two knowledge sources
somewhere within the domain are also relations of type
has_deeper_explanation between the corresponding concepts.

HR-2 External links with destinations outside of the domain are
slightly different from internal ones, and the corresponding relations
between such knowledge sources should be labelled as external.

54

of the domain. Still, such links should broaden the user’s understanding, hence the
corresponding relations should be labelled external, so that Rexternal = ∑i ∪ ri
where ri = (ko, kp, external). Notice that due to Heuristic HC-6 (page 47), the
adaptive hypertext system has a means to identify both relations and concepts in
one turn, thus strengthening the participatory role of hyper reference elements in
the process of building the domain model. From this we can advantage when
searching for a label for the external concept, namely by conceptualising the <A
HREF> element and let the winner candidate describe the external concept that the
link points to.

So much for explicitly stated references. A document consists of subordinate
elements subject to conceptualization, and their contents are likely to be somehow
related since they appear in the same document. This kind of implicit hierarchy is
not constrained within the limits of single documents, but apply between
documents and possibly even between domains, as illustrated in Figure 5–6.

Heuristics for the conceptual hierarchy guide the search for the sets of parent and
synonym relationship types, denoted Rparent and Rsynonym respectively.

Figure 5–6: The two sections (X.1 and X.2) of the first document are related since they are
both in the context of the more general document subject (X). The document hierarchy shows

how section X.1 is superior to the entire second document, as illustrated by the directed
arrows.

Table 5–10: Heuristics for the conceptual hierarchy

HR-3 All element concepts found within a document are children
of the document concept.

HR-4 There is a parent relation if a member from a set of
candidate concepts equals an already found concept.

HR-5 If two concepts have some joint members from their set of
candidates, the concepts are synonymous.

55

In agreement with the assumption that the concept abstracted from the document
has a context superior to the concepts at the element level, Heuristic HR-3 suggests
relating the document concept and the corresponding element concepts through the
parent relationship type, instead of relating all the element concepts found in a
document with each other. In other words, such elements are implicitly related
through their cohabitation in the same original document, a structure which should
be kept intact in the final domain model. Note that due to concept similarity,
implicit parental relations between different documents or elements can be caught
simply by comparing the conceptual descriptions. For instance, a document
conceptualised to agents with four elements conceptualised to reactiv,
interfac, autonom and dictionary, respectively, leads to the relations

• r = (agent, reactiv, parent)
• r = (agent, interfac, parent)
• r = (agent, autonom, parent)
• r = (agent, dictionary, parent)

Figure 5–7 illustrates the merging of the conceptual representations of the two
documents from Figure 5–6. Note that one element concept of the first document
equals the document concept of the second, namely k3. The parent relations
correctly capture the hierarchy “k6 is secondary to k1” through the relational
sequence r2 to r5. The system must somehow record that k3 now both represents a
document (“Doc2.html”) and an element (“X.2”). Since the document is an
element of type <HTML>, the same method apply for the situation illustrated in
Figure 5–5 (page 51). The implementation specific details are discussed in the next
chapter.

Now let’s turn to the last two Heuristics from the set of hierarchy. As far as the
loser candidate concepts concern, their lives should not be ended despite their loss
in the fight for presidency in the selection process. Given new importance by
Heuristic HR-4, they can finally rejoice and contribute in the process of identifying

Figure 5–7: The relations are of type parent, correctly capturing the concept hierarchy

56

parent relations. If there, for two concepts k1 and k2, exists a candidate c´ in the
loser set Lk1 with the same conceptual description as k2, then the context of k1 is
likely to be superior to that of k2. In other words, if a knowledge source has the
concept softwar and that one of its loser candidates user is the concept of
another knowledge source, then the softwar concept is parent to user. More
formally, if ∃ c´ ∈ Lk1, c´ = k2, then r = (k1, k2, parent). Additionally, if the
reverse also hold at the same time (i.e. ∃ c´ ∈ Lk2, c´ = k1) then the relationship is
not of parenthood, but rather of a more synonymous nature. Heuristic HR-5
therefore claims that two concepts are synonymous if their L sets have some
common denominators. More generally, note that whenever the L sets of two
concepts share candidates so that Lki ∩ Lkj ≠ {∅}, the synonym relation is present
between concepts ki and kj. Finally, due to the values associated with each
candidate, their joint sum provides a means to determine the strength of the
relation. E.g, a threshold might be used so that relations weaker than the threshold
can be turned down, hence controlling the size of the sets Rparent and Rsynonym.
Figure 5–8 illustrates the role of the candidate sets.

An interesting question is whether other relationship types can be found or should
be embedded in the domain model. Obviously, some concepts are more difficult to
understand than others. Does the presentational sequence matter during user
interaction? Are some concepts redundant for some users, but highly necessary for
others? How can we improve and facilitate intelligent reasoning in the adaptation
process? The prerequisite relationship type adds knowledge to the conceptual
hierarchy as it rely on a deeper understanding of the semantics of the concepts. If
concept k1 is a prerequisite for concept k2 it means that k1 should be presented to
the user before k2, whereas if k1 inhibits k2 the latter is no longer desirable in a
presentation once the first is known. Note that it can be possible to infer the
inhibitor relation from a sequence of prerequisites, though not necessarily: if k1 is

Figure 5–8: Heuristic HR-4 is illustrated to the left and HR-5 to the right.
Different values of the candidate concepts are reflected by

 the various sizes of the black dots.

57

a prerequisite for k2 which in turn is a prerequisite for k3, k3 most likely inhibits
k1. The next set of Heuristics therefore focuses on ways to find prerequisites only.

As seen before, only the most valuable terms of a knowledge source were subject
to abstraction. Remember that all candidates are terms but not all terms are
candidates. There are two steps used by Heuristic HR-6 in order to infer
prerequisites, visualised by Figure 5–9 and explained in the following.

Table 5–11: Heuristics for prerequisite relations

HR-6 A term in a knowledge source KS1 which is neither selected
as concept nor in the upper list of candidates, yet a member of the
DSL and chosen as concept for another knowledge source KS2, is
prerequisite to the concept of the first knowledge source KS1.

HR-7 In the presence of a relation between two concepts, together
with an unique, explicitly stated path of documents connecting the
two corresponding knowledge sources, there is a set of prerequisite
relations between the concepts of each document (but the first one),
and the destination of the path.

Figure 5–9: In the knowledge source “goms.html”, “GOMS” is selected as concept. One of the
low-score terms “KLM” also occurs in the domain specific list. Since the “KLM” concept is

already identified as a concept of another knowledge source (namely “klm.html”), the system
concludes it to be important for the user’s understanding of the “GOMS” concept. This is

indicated in the domain model through the prerequisite link.

58

For a randomly picked knowledge source KS, assume ki was selected as the
concept. The first step towards the prerequisites is to check if a term t from KS is
assigned a low score during the conceptualization process. Then the system
believes it to fall short as a key issue. Therefore, due to the Heuristics of the
previous section (page 46 and on) it is unlikely that such a t is explained
thoroughly in the text of KS. Second, if t, despite its low value, turns out to be a
DSL member, it is for certain that it represents important knowledge of the domain
as a whole. Since this knowledge is not debated in KS during user exploration, we
conclude that if a concept k´ from another knowledge source KS´ that equals t
already exists in the domain model, then it is a prerequisite to ki. In other words,
the system can identify prerequisite relations r = (k´, ki, prerequisite) by
comparing the DSL with the “less important” candidates from Lki.

The last Heuristic depends on the results from the previous ones, as it makes use of
one of the discovered implicit relations of any type between two concepts ki and
kj, i.e. r = (ki, kj, relationship_type). A sequence of linked knowledge sources
(stated explicitly by hyper references) make up a path, and therefore the
corresponding concepts constitute an explicitly stated path Pki, kj = [ki, ..., kj],
which is at least true at the document level. If both an r and some P exist for two
concepts ki and kj as exemplified in Figure 5–10 below (k1 to k9), Heuristic HR-7
gives birth to another part of the set of prerequisites Rprerequisite , namely ∑s ∪ rs
where rs = (kn, kj, prerequisite) and i < n < j. The existing relation that led to the
prerequisites, can be deleted since it duplicates the information.

In short, say a parent relation exists between the two concepts debat and
agent, whose knowledge sources are “debating.html” and “agents.html”
respectively. Moreover, when there also is a sequence of links from the two
sources, e.g. from “debating.html” through “software.html” and “iui.html”, to

“agents.html”, then the following prerequisites should result 1:

Figure 5–10: The explicitly stated path Pk1, k9 = [k1, k3, k6, k9] together with the
implicitly discovered relation r1 = (k1, k9, relationship_type) leads Heuristic HR-7 to find two

prerequisite relations, namely r2 = (k3, k9, prerequisite) and r3 = (k6, k9, prerequisite).

1. When the sources “software.html” and “iui.html” are conceptualised as softwar and iui,
respectively.

59

• r = (softwar, agent, prerequisite)
• r = (iui, agent, prerequisite)

5.2.6 Completing the domain model

By now the system has identified a set of concepts Kdomain = ∑i ∪ Kdoc i where
and a set of relations Rdomain = {Rhas_deeper_explanation, Rexternal, Rparent, Rsynonym,
Rprerequisite}. Together, the sets constitute the building blocks of the domain model,
i.e. representing the knowledge of the domain, which is an important basis for the
adaptation engine to perform its tasks producing adaptive presentations for the
user. As previsioned in section 4.5.1 “Building a domain model”, page 30, the
system can not be expected to construct a perfect domain model. Furthermore, as
pointed out by Davis et. al, an imperfect model will lead to incorrect conclusions
[Davis+93] which even more necessitates the need for revision and manual
adjustment from a domain expert (i.e. the author).

When generating hypertextual presentations in the adaptive phase, the appropriate
knowledge sources must be called forth. For efficiency reasons, the elements
extracted from the documents should be stored in a database or in many small files
(one file for each element). First, explicitly storing this information would ensure
quicker customization of documents. Second, when in the adaptive phase the
system must choose ingredients of the document to be generated. Since each
knowledge source is formatted in HTML, scripting languages like PHP, JSP or
ASP can be used to generate documents easily.

The notion of “document concepts” helped in the process of relating the different
knowledge sources. Tempting as it may seem, merely storing the elements found in
individual small files in the final knowledge base yields a potential pitfall. First, it
would be difficult to reconstruct the original documents from the extracted, new
knowledge sources, despite the parent relation, since only the elements classified
as important were subject to conceptualization. In the worst case the original
documents might be poorly tagged, hence leaving the system to omit a lot of
important information in its domain model. Second, it would be difficult for the
system to allow a user to switch between adaptive and original mode.

Retagging the source documents, i.e marking up each element with an unique ID
using the <A NAME> tag, would elegantly solve these problems. Even better,
retagged documents allow for other variants of adaptations including dynamic link
generation to specific areas of interest, adding or removing sections of the original
documents and so forth. Retagging the documents therefore yields an essential

60

supplementary source of information for the system, second to the file/database
representation. The storage issue is shown in Figure 5–11.

5.3 Generating adaptive presentations

With knowledge of the domain model a step is taken towards tailoring documents
to each user. The next concerns user modelling. This section briefly suggests some
overall pragmatic issues in order to place the work from the previous sections in
context of an AHS. In particular, we show how some of the previous made
commitments ensure intelligence a the system’s behaviour.

5.3.1 Structure of the user model

According to Heuristic HC-7, one concept represents many knowledge sources.
This implies that a more complex representation of which concepts are actually
learned should be embedded in the domain model. An appealing solution is to
associate the knowledge state with each concept, so that the degree of user
knowledge on a concept may vary. E.g. the user might have no knowledge at all,
incomplete, complete or deeper knowledge about a concept.

Figure 5–11: To the left, an example of a retagged document holding information about the
elements. For efficiency reasons, the elements are also stored in individual smaller files (to the

right). The representation in total yields flexibility for the adaptation in many senses

61

A user model (UM) is a knowledge representation (KR) that must represent the
knowledge state of each user. In general, a KR play five main roles [Davis+93],
each leading to important properties. First, since the KR is a surrogate for some
real entities, it is a source of error. Second, we need to make some decision on
“what to see” in order to hide some of the potential complexity, and these
ontological commitments constrain the view of the task at hand. Third, the KR is
only part of intelligent reasoning. Different definitions of intelligence contribute
both to the selection of what representation to use and to the form and content of
the inferences that can be legally made. Finally, the last two roles deal with
efficiency and expression issues, which is of less importance for the following
discussion.

At first glance, it seems natural to copy the building blocks from the domain model
(DM) into UM. However, several questions concerning the interaction are at hand.
What should be presented to the user at the first time of interaction? How can
adaptations be made based on empty user models? Do all users have equal
preferences? When is the content learned? In order to answer these questions, we
outline a structure for the user model, keeping the nature of a generic KR in mind.

The first two questions have straightforward solutions. First, the user could browse
the original documents leaving for the system to record the concepts encountered
(note that this is possible due to the retagging introduced in the previous section).
After some initial interaction steps, UM would hold some few concepts (i.e.
nodes), and adaptive behaviour can take place. The second option is for the system
to present the information associated with a start-node, explicitly specified by the
author, or randomly picked. Third, if the user has used the AHS earlier in other,
related domains, as might well happen in educational contexts, there is a chance for
similar concepts from the user model UM´ of the already learned domain and the
concepts to be learned from the present domain DM, thus allowing the system to
initialise the present user model UM. Figure 5–12 illustrates a situation with a

Figure 5–12: The user has already learned a domain UM’, which has some common concepts
with the DM at hand. Note that since the concepts “b” and “f” are not directly related in DM,

they remain so in the user model.

62

previously learned user model UM´ = {b, f, h, i, j, o, s} , where the letters represent
concepts, and the domain model to be learned is DM = {a, b, c, d, e, f, g}. The
system can easily initialise a new user model UM through the operation UM´ ∩
DM, i.e. UM = {b, f}.

The third question points out an additional benefit of embedding user models in
adaptive systems. Not only the knowledge level will vary among users.
Presentational and learning style preferences are also likely to differ, especially for
hypertextual environments. Therefore, user models for an AHS should include
preferred learning style or media types, background, skills of the user etc.
Additionally, drawing assumptions on the level of the user skills, can be useful.
More skilled users should be presented advanced features and immediately
understand the underlying concepts, whereas novices would need a mix of many
different presentations of the same concept. A stereotype approach as discussed in
section 4.3 “Models add power to adaptive systems”, page 24, can be used for this
part.

There are many factors to be considered when analysing user behaviour, e.g. how a
node (concept) is accessed, which information is contained in the node and the
time spent [Brusilovsky96]. Griffin suggests that a time interval is more
appropriate, since people also can get distracted from their task [Griffin97].

To summarize, the user model should at least contain information on concepts, user
characteristics (expert, intermediate, novice), user preferences (illustrations, text,
summaries), state of the concepts (complete, ready-to-learn, incomplete) and the
relations.

5.3.2 Adaptation Model

The system should tailor documents for the user in order to fill the gap of
knowledge. In its simplest form the selection task constitutes the relative
compliment KDM - KUM, that is picking those concepts from the domain model
that has not yet been offered to the user. However, such a solution is not sufficient
for an intelligent behaviour. In which order should the concepts be presented?
When is a concept actually learned? How to best bridge the gap of knowledge for
users with varying skills? Obviously, the system lacks an important component.

According to Wu et. al, the adaptation model states how the system can perform its
adaptation based on a set of adaptation rules. In order to separate the
implementation dependent aspects from the explicit models AM, DM and UM,
some sort of adaptation engine (AE) responsible for performing the adaptation
[Wu+01] and updating the user model [Kules00] is necessary. For our AHS, an AE
provides the composition of documents on the fly by selecting knowledge sources
as pointed to from the concepts in DM, through reasoning on UM, based on rules
from AM. Henceforth, the process of tailoring documents is referred to as how to
select appropriate concepts.

Due to the presence of the conceptual states in UM and the relationship types in
DM, the AE can add intelligence to the process of selecting concepts. Concepts in

63

UM have values indicating at which level they are understood. The relationship
types of DM indicate how the concepts are related. Keep in mind that the goal of
serving the user with information would be twofold: both to plan for a sequence of
concepts and to complete their respective knowledge states. In the following both
parts are intertwined, since the adaptive documents should result based on both
considerations.

In order to fill in more knowledge about a concept and complete its state,
corresponding sections not yet learned could be offered to the user. Following
has_deeper_explanation and parent relations should extend the user’s
understanding of a concept, e.g. when presenting a concept that is a deeper
explanation of another, the status of the latter should be updated from “incomplete”
to “deeper”. For concepts that don’t have any attached deeper explanations, the
deeper level can be obtained when all knowledge sources associated with the
concept is learned. Furthermore, traversing nearby concepts, not only increases the
respective conceptual states. In general, for the task of bridging the gap between
concepts far apart in UM, relations from DM would usefully guide the AE to
construct paths that in sum would network the gaps. The rules from AM would
specify what to do when encountering different relationship types, hence
contributing to the resulting curriculum. In particular, rules in the AE might use the
prerequisite relations to verify whether the prerequisite concepts are satisfied every
time a concept is asked for, and if not, simply present the prerequisites first.
Finally, for expert users external relations would be useful as they most likely
extend the context of the domain (c.f. HR-2, page 53). Likewise, external resources
should not be presented to novices until all concepts are known.

5.3.3 Various forms of adaptations

Hitherto, the task of our AHS was to dynamically generate documents based on
knowledge extracted from the domain. However, the structure of DM and the
preservation of the original (retagged) documents presented in this thesis should
provide for many sorts of adaptations. It is interesting to briefly explore some of
the possible variants. We close this chapter by proposing three options acting as
either stand alone solutions or extensions to our AHS.

One option that makes its actions quite transparent, is for the AHS to follow the
predefined curriculum and content of the original documents, greying out
undesired fragments, insert new sections, and dynamically adding constructed
links (which is referred to as link construction in the literature). Greying out an
undesired fragment would be based on whether the concept representing that
section is learned or not. Sometimes, prerequisite relations would trigger the
system to add more information on a page, e.g. based on incomplete knowledge of

prerequisites1. Link generation can easily be accomplished due to the form of the
marked-up sections from the retagging phase (c.f. Figure 5–11), allowing dynamic
links to refer to specific areas of the original documents as well as the documents
as a whole.

1. The system might simply embed prerequisite concepts whenever their knowledge states
are incomplete.

64

As a second option, based on the element types, we propose that short summaries
can be customised for users asking for a synopsis of the domain or some subject. In
particular, a synopsis for one concept can be made by generating lists out of
knowledge sources that originally were e.g. heading-elements. Likewise, if a
resumé of the domain is to be made, the system can use the same strategies for
concepts it infers to be more important than others, that is for “key concepts”. As
an example, an Heuristic which claims the number of relations to and from a
concept indicate its importance, would be provide a simple way to identify key
concepts. More sophisticated methods are obviously possible, like a more thorough
analysis of DM, searching for the most centralised concepts. Remember from the
discussion in the first section of this chapter where we debated what form the
concepts should take on. Since we stuck to descriptive terms stolen directly from
the knowledge sources instead of building a vector representation, even shorter
summaries can also be provided by listing a range of concepts and present them as
a keywords-list. This additional benefit would require no extra work but a few
rules to select and display the most suitable concepts.

Lastly, if the user has insufficient or incorrect knowledge about a concept, e.g.
revealed through predefined, provisional tests, the system should decrease its state
in UM to the appropriate level, so that previously presented concepts can be
redisplayed. This process possibly includes a reorganisation of the first curriculum
or a more extensive use of illustrations. Furthermore, assume that the system can
visualise DM, i.e. drawing the domain model network on the screen. When
combined with the user model, the knowledge gap could be shown to the user, who
would thus be able to place what was already learned into a larger context
understanding what is around the next corner. Note that the ability for the user to
puzzle the context of the part of DM which is not already walked-through, is again
due to the conceptual descriptions.

65

6 IMPLEMENTATION AND
EVALUATION

Up to the present, we have outlined the overall architecture and possibilities of an
AHS, focusing on the development of Heuristics for adding quality to the process
of building the domain model. In this chapter we first present an implementation of
the strategy, demonstrating the resulting concepts and relations based on a small
document collection. Next, we discuss and evaluate our work, concluding with
some promising fields of future research.

6.1 Realising the domain model

Our strategy for conceptualization presumes that the domain documents are being
parsed for important elements in order to build the domain model. Every term in
these elements is a candidate concept. Guided by the Heuristics for concepts
introduced in section 5.2.3, a conceptualizer module associates values with each
candidate, leaving some with a higher score than others, and finally selects the
most promising term as the concept. The same process apply at both the document
and element level. The results from the parsing is passed on to another module for
further analysis, which includes a merge of concepts and identification of
relationship types.

Our HTML parser is written in C though any language would do for the task. The
analysis is performed by PROLOG. Due to its properties as a language, PROLOG is
very suitable for performing effective and powerful reasoning using only a few
lines of programming code. The decision to use the combination of C and
PROLOG is based on a wish for integrating the AHS routines into an existing agent
based framework written in C. The agents at hand are PROLOG machines that can
call C routines [Thomassen99]. Furthermore, C and PHP come well along, and
suggestively, functions from OpenGL can easily be called from a C agent. All
implementation specific details are attached in Appendix E - Implementation of
conceptualizer.

6.1.1 A walk through the conceptualization
processes

Before parsing, all hyper references in the domain are identified and stored in a
file, and the values of the Heuristics for finding concepts are initialised. All the

66

documents in the domain are listed in a file of document names, one name for each
line. The process of analysing the domain is therefore controlled by walking
through the file line by line while opening the next document and analysing it.
Since stemming is used throughout the analysis, the DSL is also stemmed to be on
the safe side. Thereafter, the first document is parsed followed by all its elements
classified as important, then the second document and its important elements, and
so forth. Unless otherwise stated, from now on we refer to both documents and
important elements as knowledge sources.

According to one of the principles of HCI, it is much easier to agree or disagree
with some proposal than coming up with something new from scratch. For
instance, a DSL could be constructed semi-automatically by proposing the highest
weighted terms from each document, then allowing the author to edit and correct
the list. The construction should be rather simple since it can basically be
implemented as a text file of words regarded as being important.

The Heuristics for finding candidates rely on several methods for operating on the
knowledge sources in order to incrementally adjust the values of each candidate.
All sets of temporal or longer term results are written to text files with one term for
each line, allowing for easy manipulation of appropriate sets in the combination of
an ADT (abstract data type) List. Regularly used functions include list operations
for comparison, searching for specific terms, sorting, counting occurrences of the
elements, reading a file to its internal list representation, and removing duplicate
members. The step of lexical analysis and removing stopwords has an expensive
cost and could account for as much as 50% of the computational expense of
compilation [Frakes+92]. An extremely efficient implementation is to remove
stopwords as part of the lexical analysis, that is, functions for lexical analysis and

stopword removal are intertwined through the use of a DFA1. All terms surviving
this process are given values by counting term frequencies, according to Heuristic
HC-2, and membership in the DSL is checked for (HC-1), adding the associated
value to members. Similarly, emphasizers in the knowledge sources are identified
(HC-3), while meta information is of great importance for documents only (HC-4).

The links play a dual role. To fresh up from the discussion in the previous chapter,
terms in hyper reference elements from somewhere in the domain pointing to the
document being analysed, are likely to be among its strongest candidate concepts.
Since such hyper reference terms are strong candidates for the corresponding
destination documents, they are not suitable as candidates for the document
hosting the link element. In concordance with Heuristics HC-5 and HC-6, the file
of all identified links in the domain guides the punishment and reward of
candidates. As mentioned earlier, documents are parsed before its elements, as
required by Heuristics HC-8 and HC-11, and occurrences of the selected document
concept in the elements of a document are punished by adding negative values.

As the parsing makes progress several things happen at different levels. Of
importance, duplicate combinations of the tuple <tagName, conceptName> are not

1. A Deterministic Finite Automaton (DFA) object represents words in a network of
interconnected characters, so that a whole word is found by following paths of linked
characters.

67

allowed for elements nor for documents, so the system rejects such proposals and
tries to select among the consecutive candidate concepts until successful. The
sections of the documents are being retagged and the knowledge sources identified
are stored in individual, uniquely named files, all together constituting a new
knowledge base. As far as reporting concerns, all candidate concepts are written to
individual log files, one log file for each document. Additionally, the concepts
selected are added to another file in a form understandable by PROLOG in order to
facilitate further analysis. As illustrated in Figure 6–1: the file
“parsing_results.pro” has information on each knowledge source, like conceptual

representation, the element type1, an ID for later retrieval from the already
established knowledge base, and a list of candidates with scores close to that of the
concept selected. The latter attribute (also referred to as “the upper list of
candidates”) facilitates evaluation and adjustment of the proposed domain model
as the system might suggest other candidates if the author is displeased with the
proposed DM, and, as seen in the previous chapter, they will also play an important
role when it comes to the identification of certain relationship types.

Each element originates from a document. The observant reader might wonder
why document names are listed as well. Even though this information is held by
the third attribute, or ID, it facilitates the implementation of one of the Heuristics.

1. Just as element types are labeled with the corresponding tag names, documents are
labeled as “html”.

Figure 6–1: Information about the knowledge sources are written to a file in a format
understandable by PROLOG. For the document concepts, the ID’s appear as filenames only.

For each element within a document, its ID is composed as follows:
“filename” + “#elm” + “number”, where the number is increased as new elements are being
analysed. Note that the concepts are stemmed. Also worth noticing is the uniqueness of the

combination concept + tag, which agrees to the previous discussion.

68

The reason is that PROLOG is weak on string manipulation, even for a simple task
like extracting the file name from the ID.

6.1.2 Seaming up the domain model

From the file in Figure 6–1 we see that some conceptual descriptions coincide.
Note that the temporary division of document concepts and element concepts (c.f.
section 5.1.4) were useful for splitting up the domain knowledge into appropriate
knowledge sources, and for discussing how to capture the conceptual hierarchy.
For the final DM, however, this division is superfluous since the conceptual
hierarchy will be reflected through the relations. Furthermore, the file
“parser_results.pro” must be kept intact for the future adaptation phase, since it
holds information on which knowledge sources each concept represents.
Therefore, listing all the conceptual descriptions as PROLOG facts in a new file
while removing duplicates, elegantly solves the first part of completing the DM.
We want a PROLOG representation of the domain knowledge in terms of
abstracted concepts and how they are related. The left part of Figure 6–2 shows the
domain model as such a file. To the right, the DM it is visualised as a conceptual
structure.

From the two illustrations shown by now, we see that one goal to be accomplished
is to abstract the concepts only, from all the information held by the fact
kw_source, where new facts should be written on the form

Figure 6–2: The domain model represented in a PROLOG file.

69

concept(ConceptName). This task can be implemented straightforward as
illustrated by the rather simple PROLOG code below:

Heuristics HR-1 and HR-2 sought to find deeper explanation relationship types,
doing so through the use of already identified hyper references. Remember that the
initial step of conceptualization was to file all hyper references of the domain,
which was then necessary to help the parser to point out concepts. Now this file
becomes a useful source for the relational Heuristics HR-1 and HR-2. Figure 6–3
illustrates a small sample of links generated from the analysis of a domain.

As mentioned, the domain was parsed based on a listing of all document filenames.
The domain is useful when identifying relations, so this file is transformed to a
PROLOG fact using a list. That is, for a domain with e.g. the four files “file1.html”,
“file2.html”, “file3.html” and “file4.html”, the corresponding PROLOG fact takes
on the form:

Table 6–1: PROLOG code for collecting all concepts and writing these as new facts.

%--
% This code collects each concept from the kw_source fact,
% and writes the result as a new fact.

make_concept :-
 kw_source(ConceptName, _ , _ , _ , _) ,
 assert(concept(ConceptName)) ,
 fail.
 % fail forces backtracking so that every combination is tried

make_concept.
 %when everything is tried and the above rule fails, this one succeeds

Figure 6–3: The file based on linkage between the original documents. Note that one link in
Doc1.html points to a specific section of Doc4.html, which in turn has a link directed to

somewhere outside the domain (namely to a document debating (“foley”). The destination in
Doc4.html that is named “pattie” leads to the identification of a name-clause.

70

domain([“file1.html”,“file2.html”,“file3.html” ,“file4.html”]).

a task which can be accomplished e.g. by the C-routines. Furthermore, by
combining facts about hyper references with the facts on the knowledge sources,
PROLOG routines can find out which sections are related and link the
corresponding concepts. The built-in predicates assert and retract makes it
possible to update the program with new clauses or delete clauses during program
execution, another advantage with the PROLOG language. In other words, as the
program precedes, it can modify itself. This convenience is used thoroughly in the
implementation of the Heuristics, and was also used when making concepts out of
the kw_source fact (c.f. Table 6–1). The code for the first two Heuristics are
illustrated below.

Table 6–2: Heuristics HR-1 and HR-2 expressed in PROLOG.

%--
% HR-1: Hyper references between two knowledge sources somewhere within
% the domain are also relations of type has_deeper_explanation between the
% corresponding concepts.

hr1 :-
 href(From, To, _) ,
 kw_source(ConceptA, _ , From, _ , _) ,
 kw_source(ConceptB, _ , To, _ , _) ,
 assert(relation(has_deeper_explanation, ConceptA, ConceptB)) ,
 fail. % forces backtracking

hr1. % ensure success

%--
% member is recursively defined and finds out whether an X is in a list.

member(X, [X | Tail]).
member(X, [Head | Tail]) :-
 member(X, Tail).

%--
% The domain is constrained to a list of valid filenames, here exemplified
% with four files only. The rule outsideDomain checks for membership in
% the domain list.

domain([“file1.html”, “file2.html”, “file3.html”, “file4.html”]).

outsideDomain(F) :-
 domain(D) ,
 not member(F, D).

%--
% HR-2: External links with destinations outside of the domain
% are slightly different from internal ones, and the corresponding
% relations between such knowledge sources should be labelled as external.

hr2 :-
 href(From, To, _) ,
 outsideDomain(To) ,
 kw_source(ConceptA, _ , From, _ , _) ,
 kw_source(ConceptB, _ , To, _ , _) ,
 assert(relation(external, ConceptA, ConceptB)),
 fail. % forces backtracking

hr2. % ensure success

71

As an example, the task for HR-1 is to find concepts that are linked based on
document linkage and we therefore start with establishing the source (the variable
From) and the destination (the variable To) of each link by searching the href
facts listed in Figure 6–3. Then we need the document concept from the source of
the link and the document concept from the link destination, so we pick only these
from the kw_source facts listed in Figure 6–1, elegantly ignoring the element
types and the list of candidates using the PROLOG understandable underscore
character as argument. Note that due to the form of the arguments of href and the
form of the ID argument from kw_source, we don’t have to account for element
types, i.e. only document concepts will be selected. The set of Heuristic for the
conceptual hierarchy can also be easily implemented in PROLOG. Before finishing
the rule for HR-3, we note that when the filenames equal for two concepts, they
denote the same document, and the element type “html” denotes the document
concept.

Table 6–3: Implementing the Heuristics for finding parent and synonym relationship types.

%--
% HR-3: All element concepts found within a document are children
% of the document concept.

hr3 :-
 kw_source(DocumentConcept, html, _ , _ , File) ,
 kw_source(ElementConcept, _ , _ , _ , File) ,
 not DocumentConcept = ElementConcept ,
 assert(relation(parent, DocumentConcept, ElementConcept)) ,
 fail. % forces backtracking

hr3. % ensure success

%--
% HR-4: There is a parent relation if a member from a set of
% candidate concepts equals an already found concept.

hr4 :-
 kw_source(ConceptA, _ , _ , CandidateList, _) ,
 kw_source(ConceptB, _ , _ , _ , _) ,
 not ConceptA = ConceptB , % the two concepts should not be equal
 member(ConceptB, CandidateList) ,
 not relation(parent, ConceptA, ConceptB) , %only consider once
 assert(relation(parent, ConceptA, ConceptB)) ,
 fail. % forces backtracking

hr4. % ensure success

%--
% HR-5: If two concepts have some joint members from their
% set of candidates, the concepts are synonymous.

commonMember(List1, List2) :-
 member(Term, List1) ,
 member(Term, List2).

hr5 :-
 kw_source(ConceptA, _ , _ , CandidateListA, _) ,
 kw_source(ConceptB, _ , _ , CandidateListB, _) ,
 commonMember(CandidateListA, CandidateListB) ,
 not ConceptA = ConceptB ,
 not relation(synonym, ConceptA, ConceptB) , %only consider once
 assert(relation(synonym, ConceptA, ConceptB)) ,
 fail. % forces backtracking

hr5. % ensure success

72

The last two Heuristics will aim at finding prerequisite relations. Similar to
converting the file with the domain document listing, we also assume that the C-
routines produces a PROLOG understandable version of the DSL. In order to make
Heuristic HR-6 work, we need information on the terms that is not in the upper list
of candidate concepts, in other words those terms that are not present in the last
argument of clauses named kw_source. Remember from the previous discussion
that such a list exists for each element, namely in the log file for each document.
Assuming that the C-routines also convert this list to PROLOG facts on the form
lowerList(ID, ListOfLowerScoreTerms), we are set to implement this
Heuristic.

The PROLOG code of Heuristic HR-6 seems more complex than those of the
previous rules. Will it generate the prerequisite relation correctly? Refresh on the
situation of Figure 5–9 (which illustrated Heuristic HR-6) where a regular term
klm, which also occurred in the DSL, was only briefly mentioned in a document.
Since klm already had been identified as a concept somewhere else, and goms was
voted as concept of the document in which klm lived as a regular term only, we
claimed klm to be prerequisite to goms. In order to explain the implementation, we

Table 6–4: “Prologging” the first prerequisite relationship type.

%--
% Lower score terms are listed as PROLOG facts, here illustrated with
% three examples. Note that the lists in lowerList and kw_source
% together constitute all the terms surviving lexical analysis.

lowerList("file4.html", [speech, futur, direct, manipu, design, system]).
lowerList("file4.html#elm1", [design, system, speech, memori, direct]).
lowerList("file4.html#elm2", [softwar, disagr, mainli, due, ben]).

inLowerList(Term, Location) :-
 lowerList(Location, Z) ,
 member(Term, Z).

%--
% The domain specific list contains terms that are regarded important,
% here exemplified with seven terms only.

domainSpecificList([hci, adapt, iui, user, model, domain, intellig]).

inDsl(Term) :-
 domainSpecificList(DSL) ,
 member(Term, DSL).

%--
% HR-6: A term in a knowledge source KS_1 which is neither selected as
% concept nor in the upper list of candidates, yet a member of the DSL
% and chosen as concept for another knowledge source KS_2,
% is prerequisite to the concept of the first knowledge source KS_1.

hr6 :-
 inLowerList(Term, Location) ,
 inDsl(Term) ,
 kw_source(Concept , _ , Location, _ , _) ,
 concept(Term) ,
 %does the concept of the source equals the term?
 assert(relation(prerequisite, Term, Concept)) ,
 %if so, then make a relation between the two.
 fail. % forces backtracking

hr6. % ensure success

73

illustrate by including only the facts necessary. Note that the content of Table 6–5
corresponds to the klm/goms situation, where the two clauses concept(goms).
and concept(klm). were obtained by calling the previously stated rule
make_concept.

To start, we ask hr6. in order to identify the prerequisite relations which
conditions to the Heuristic. The first two goals tries to satisfy membership in the
lowerList and the domainSpecificList, using the rules from Table 6–4. For
successful bindings to the variable Term (in our case the second member of the
lower list, that is klm), the Location variable is further used in order to identify
the concept of the knowledge source. Next, we must ask whether the term found is
also a concept, simply by posing the question concept(Term). Since there is
such a clause for the present term, namely concept(klm). the question
succeeds, and a prerequisite relation can be inserted as part of the knowledge
database. Finally, in order to validate, we ask PROLOG the question
relation(prerequisite, A, B). to check whether any relations were
found. The result is that the variables A and B are bound to klm and goms
respectively, in other words PROLOG found the newly inserted fact
relation(prerequisite, klm, goms).

The last Heuristic HR-7 assumes there is a path between two related concepts.
Thus, its solution involves the traversal of several paths. We therefore start by
defining the code for how to find a path, and doing so requires the use of edges, (a
path is made of edges between the nodes). Note that we already have the edges
established from the href facts. If a path exists along with an already discovered
relation, the procedure addToSet starts to extend the database with new
prerequisite relations. Finally, the original relation is removed. The code for all this

Table 6–5: A small portion of the knowledge on two documents as seen from PROLOG.

kw_source(goms, ul, "file5.html", [operator, mhp, analysis], "file5.html").
kw_source(klm, p, "file7.html", [keystroke, button, time], "file7.html").

lowerList("file5.html", [mouse, klm, movement]).

domainSpecificList([hci, foley, norman, goms, klm, mhp, gestalt]).

concept(goms).
concept(klm).

74

is summarised below and will not be further explained. Again, notice the compact
form due to the properties of the PROLOG language.

By now, we have seen that all concepts and relations can be found using PROLOG.
Together, they provide the basis for completing the domain model. Once this
information is merged into one file (e.g. “dm.pro” used in Figure 6–2), this file
essentially constitute the domain model, that is, one single file can represent the
domain knowledge. The Heuristics work independently of each other, and hence
there is also a chance that some concepts are linked with more than one relation. In
particular, some Heuristics produce bi-directional relations. For instance, Heuristic
HR-1 produces the relations

relation(has_deeper_explanation, software, debat).
relation(has_deeper_explanation, debat, software).

Table 6–6: Paths are the basis for finding more prerequisites.

%--
% There is a path between two nodes if there is an edge from the first
% node to an intermediate node, which again has a path to the destination
% node. This code also adds the nodes to the head of a list.

path(From, To, [To]) :-
 href(From, To, _).

path(From, To, [Intermediate|Tail]) :-
 href(From, Intermediate, _), %adds to head of list
 path(Intermediate, To, Tail).

%--
% This rule asserts prerequisite relations from the intermediate
% members of a path to the last node

addToSet([Head|Tail], ToConcept) :-
 kw_source(FromConcept, _ , Head, _ , _) ,
 not FromConcept = ToConcept , %write relation if the concepts differ
 assert(relation(prerequisite, FromConcept, ToConcept)) ,
 addToSet(Tail, ToConcept) , %move down the path

addToSet([], _). %trivial case

%--
% HR-7: In the presence of a relation between two concepts, together with
% an unique, explicitly stated path of documents connecting the two
% corresponding knowledge sources, there is a set of prerequisite
% relations between the concepts of each document (but the first one),
% and the destination of the path.
% Note that the procedure removes the original relationship type if
% some prerequisites are found

hr7 :-
 relation(Type, ConA, ConB) , %if any relation exists
 kw_source(ConA , _ , From, _ , _) , %we go get the
 kw_source(ConB , _ , To, _ , _) , %destinations
 path(From, To, Visited) , %is there an explicitly stated path?
 addToSet(Visited, ConB) , %add all relations along this path
 retract(relation(Type, ConA, ConB)) , %remove original relation
 fail. % forces backtracking

hr7. % ensure success

75

In order to fix this problem, one of the superfluous clauses can be retracted from
the PROLOG database. The rule removeBidirectional in Table 6–7 shows
how.

A well known principle of design is that human beings find it easier to overrule
errors from a proposal than coming up with one themselves from scratch. As noted,
someone skilled in the domain should revise the DM in order to secure that only
appropriate concepts and relations remain. We suggest a graphical visualization in
the form of a conceptual network, though other presentational forms are possible.
Note that the number of concepts might get out of hand. Therefore the system
should provide means for “switching off” some concepts and hence leaving only
part of DM visible. Such a demand can be fulfilled simply through hiding the
subordinate concepts of the parent relations, that is zooming in or out until the
desired level of detail is achieved (when using a graphical interface). In a similar
fashion, if the author prefers a pruned network, the system should offer to
permanently delete all concepts and relations not visible. Moreover, for the human
reviser, the file “parsing_results.pro” proves to be useful in many ways. As an
example, its list attribute, whose members are ranked by value, will facilitate tasks
like renaming since new concepts can be proposed as substitutes for those
incorrectly suggested (by the system) in the first place.

6.2 Possibilities for the AHS

In the following we briefly sketch an example of how a simple user model and
adaptation model might look, thus substantiating the choice of a PROLOG based
implementation. We focus on the representation of the conceptual knowledge and
generic user information and preferences.

6.2.1 Picturing a simple user model

As outlined in the previous chapter, UM must hold information on the user’s level
of conceptual knowledge. A simple scheme is to save information on which
concepts the user already has knowledge and at what level. The user model should
be incrementally built so that it at any time can provide the adaptive hypertext
system with information on what the user knows. Since one concept can represent
many different knowledge sources, it is important that the user model also records
which knowledge sources have been presented for each concept. Continuing with

Table 6–7: Some clauses to clean up bi-directional relations

removeBidirectional :-
 relation(Type, ConceptA, ConceptB) ,
 relation(Type, ConceptB, ConceptA) ,
 retract(relation(Type, ConceptB, ConceptA)) ,
 %removes the latter bidirectional relation
 fail. % forces backtracking

removeBidirectional. % ensure success

76

PROLOG notation, we use a fact knowledge which has attributes on the concept,
along with a list of knowledge sources that have been shown for each concept, and
finally a state indicating which knowledge level the user has on each concept. For
instance, the state of the concept “debat” is set to deeper since the user has
accessed the external resource conceptualised as “foley” (c.f Figure 6–2). Since we
regard UM as an overlay model of DM, it seems natural to also include the
corresponding relations as new concepts are learned, that is, relations to neighbour
concepts. Why embed relations in the user model? There are at least one reason.
When a concept is learned and its neighbours are not, the knowledge gap should be
bridged, and if the relations are kept in the domain model only, the implementation
of the adaptation rules becomes cumbersome. Figure 6–4 shows how the file

“um.pro” represents a simple user model1. Note that due to the uniqueness of the
tuple <tagName, conceptName>, the information in the tag list can be either in
terms of the ID or as the tag name (we prefer using the ID, in case the author,
despite warnings from the system, overrules the recommendations and assigns the
same concept for two equal elements).

A user model should present information according to the needs and preferences of
each user with regard to presentational form and learning abilities. Thus, by
including some generic information on the learning styles and skills of each user in
UM, the system is not constrained to a selection among the concepts not yet
learned. Along with unknown concepts, also the preferences of each user can
influence the adaptive commitments, so that presentational form and degree of
difficulty can be further varied.

Figure 6–4: A simple user model representing user knowledge at various levels. Note that only
relations to neighbour concepts of the concepts already learned, are included in UM.

1. Possible extensions include e.g. the time spent on each node and interaction history.

77

From the clauses

learning_style([graphical, philosophical]).
capability_level(intermediate).

we see that the user “Lady Ada Hyper” prefers the system to generate
visualizations if possible, a task that can easily be accomplished simply by asking
for images and tables of the concept being debated. Remember that this
information can be found from the attribute element-type in the kw_source
facts. Likewise, the system has somehow inferred the capability of the user to be
intermediate. It would therefore e.g. present easier concepts before the more
difficult ones, but still challenge the user on more difficult subjects, thus aiming at
improving the user knowledge without exaggerating.

6.2.2 Adaptation rules

We believe that the implementation of DM and UM in terms of facts has made a
powerful foundation for the adaptive phase, and opened for various and flexible
adaptive presentations, which can be fairly quickly generated by means of
PROLOG rules. According to the introductory part on adaptive systems in section
4.5 “Planning an adaptive hypertext system”, page 29, the actions or tasks of an
adaptive hypertext system are controlled by the adaptive engine operating on an
adaptation model. In accordance with our work so far, a task would lead the
adaptive engine to execute a query, and the rules in the adaptation model would
ensure that the correct action can be executed. Three independent tasks to illustrate
example rules are proposed in Table 6–8. The tasks will be explained in the
following. Note that the clauses of the last rule are explained in detail after
discussing the first two rules.

Table 6–8: Examples of how easily powerful adaptation rules can be written in PROLOG.

Description of
task

Example of AE
call

Rule that fires in AM

1. Provide
graphical
information about
a concept to the
user.

?- show(agent,img). show(Concept, ElmType) :-
 kw_source(Concept, ElmType,
 FileID, _ , _) ,
 display(FileID).

2. Based on a
concept in DM,
visualise a sub-
network of
relations and
neighbour
concepts not yet
visited.

?- visualise(user). visualise(Concept) :-
 concept(Concept) ,
 relation(Type, Concept, Neighbour) ,
 draw(Concept, Neighbour, Type) ,
 fail. %get all neighbours
visualise(Concept). %ensure success

3. Propose new
concepts to be
presented to the
user based on the
gap close to a
given concept in
the user model

?- next(softwar). next(Concept) :-
 getNeighboursDM(Concept, DMList) ,
 userKnows(Concept, UMList) ,
 findGap(DMList, UMList, GapList).

78

The first task listed concerns to embed graphical information on a concept in the
adaptive document being presented to the user. It assumes the parser found exactly
that concept for an image element during parsing the documents. If so, the image to
be presented is contained as HTML code within the knowledge base in a small file
whose reference is kept in the third attribute of kw_source, so the solution is
simple: Query the Adaptive Engine to display the correct fileID if the associated
concept and the correct type proves to be true for a knowledge source. Note that we
assume that the rule display(FileID) exists without focusing on its
implementation. Somehow, it should return the fileID to the system for
generation of the adaptive document to be presented. One way to do this is for
display to write include-sentences to a file “includes.php”, which e.g. a PHP script
traverses and uses further for generation of the final documents. Note this is very
simple for PHP since it can tailor many different documents by simply including
their filenames.

The second task provides a visualization of the nearby network of a concept upon
request. Note that whereas the information is provided by simple PROLOG clauses,
the actual routines for drawing might be more complex and typically performed by
a routine written in another programming language, typically OpenGL. As noted,
one reason for choosing PROLOG and C is that the two can communicate within
an already existing agent based framework, and OpenGL routines can be called
from C.

Before considering the third task, we recall that the goal of adaptation is to satisfy
the user with respect to knowledge, and in order to do so, a plan for which concepts
to present next and how to present them, is needed. There are various strategies for
filling up the user model, each leading to different adaptation rules. One strategy is
to search the domain model in a breadth first manner and introduce all concepts
briefly before focusing on increasing the user understanding of each concept.
Cycling through the domain model in order to cover up incomplete user knowledge
would gradually perfect the user model. More likely than benefiting from many
walk-throughs, the user could experience all the jumping and revisiting to be
annoyingly inefficient and loose track of the knowledge to be learned. The
opposite strategy follows a depth first like search through the domain, aiming at
fully describing each concept in one operation. A problem with finishing off each
concept before regarding new ones is that the user could miss sight of the greater
picture.

Another strategy for guiding the selection process is based on the relations
identified so far. Using relations when searching for new pieces of knowledge
includes several subordinate tasks to be accomplished. Remember that the gap of
knowledge in the user model consists of unrelated areas in the user model with
corresponding related areas in the domain model. The task then comes to bridge
the gap of knowledge using the relations of DM. Note from the below illustration
that the concept softwar in DM is related to the concepts intellig, agent,
definit and debat, whereas the user has learned the concepts software and
agent only, as indicated with empty circles. In other words, there is a gap close to
the concept software which should be bridged, and the concepts intellig

79

and definit constitute the building blocks to the piece of engineering work at
hand.

The strategy is to let lists represent both UM and DM, and show all members from
UM not also in DM. The first step is to identify a list of neighbours from DM close
to a concept, doing so by calling the rule getNeighbours(Concept,
DMList). and now DMList holds all nodes close to the concept. Similarily, a
list of user model neighbours to the concept must be found. The next step of the
strategy is to use the rule findGap(DMList, UMList, GapList). to subtract
the concepts of the user model from the members of the domain model. This
operation is basically a process of deleting every member of UMList from
DMList, resulting in another list GapList holding the concepts to be displayed
to the user. Using our example, DMList initially looks like this:

[agent, intellig, definit, debat]

and the UMList contains

[agent, debat]

so GapList would after the findgap rule is run, yield

[intellig, definit]

Note that the system should also validate whether other concepts are required to be
known before displaying the members of GapList, placing possible prerequisites
along with the gap concepts found in a final list, which should then be traversed

Figure 6–5: The gap in the user model.

80

and displayed to the user. Table 6–9 sums up the rules needed for bridging gaps,
but does not embed the rules needed to validate prerequisites.

6.3 Evaluation

The goal of the conceptualizer module was to abstract the contents of documents
and the sections as good as possible. Rules were then used to complete DM with
relations between the appropriate concepts. Fine, but are the results reliable? How
can we justify the actions taken? What if the structure of a collection of documents
deviate from the assumptions of some Heuristics? This section discusses the
influence of the commitments made.

6.3.1 Optimizing and justifying the performance

In section 5.2.4 we suggested that it is possible to experiment with the total
outcome of the conceptualization process by varying the values associated with
each Heuristic. The candidate concepts are terms, where the one with the highest

Table 6–9: Examples of adaptation rules written in PROLOG.

%--
% The rule next(Concept) finds a gap and builds a bridge, that is a list
% of concepts that can be visited next. Note that this routine does not
% validate the prerequisites of the concepts in the gap.

deletepossible(Item, _ , []).
deletepossible(Item, [Item|Tail] , Tail).
deletepossible(Item, [Y|Tail] , [Y|Tail2]) :-
 deletepossible(Item, Tail, Tail2).

insert(X, List, BiggerList) :- %insert is the inverse of delete
 delete(X, BiggerList, List).

findGap([] , R, R). %trivial case
findGap(DMList, [Head|Tail], GapList):-
 deletepossible(Head, DMList, IntermediateList) ,
 %deletes common members
 findGap(Tail, IntermediateList, GapList).

all(Concept, ListIn, ListOut) :- %go get all neighbours
 relation(_ , Concept, Next) ,
 not member(Concept, ListIn) ,
 all(Concept, [Next|ListIn], ListOut).
all(C, List, List). %trivial case

getNeighbour(Concept, DMList) :- %get neigbours to a concept in DM
 all(Concept, [], DMList).

userKnows(Concept, UMList) :- %get concepts known to the user.
 all2(Concept, [], UMList). %almost equal to all, except that
 %relation in all is the DM relation,
 %and relation i all2 is UM relation.

next(Concept) :-
 getNeighboursDM(Concept, DMList) , %list all neighbours from DM
 userKnows(Concept, UMList) , % build list of neighb. known to user
 findGap(DMList, UMList, GapList) , %subtract UM from DM

81

value after all Heuristics are performed, is selected as concept. For every term ti an
Heuristic can either apply or not, indicated in Table 6–10 with “Yes” and “No”,
respectively. The columns indicates which of the Heuristics do fire for each term.
Based on some few possible combinations, this section tries to draw some
conclusions and apply suitable values for an optimal combination of the values
donated from each Heuristic. Note that HC-5 is implemented in two portions in
order to account for its dual nature while Heuristics HC-7, HC-9, HC-10 and HC-
11 are left out since they mainly deal with issues like the level of abstraction,
sequence of analysis etc.

For instance, the term t1 does not appear in the DSL, nor in any important element,
so the only Heuristic that strikes, is Heuristic HC-2, as shown in its column. We
make several notes from the above combinations:

1. All candidates have a term frequency (HC-2), but the number will vary from one
and up. In the worst case, no Heuristics but the second one proves correct, as for
t1.

2. A term might well occur both in the DSL and in outgoing links, as illustrated with
t2.

3. There are terms like t3 that occur both in outgoing and incoming links (HC-5b
and HC-6) at the same time. With incoming links, we think of links from
elsewhere pointing to a specific section hosting the term.

4. For an element, all Heuristics but the last one suggests assigning positive values
to the candidate t4.

Instead of testing empirically which combination of values yield the better results,
we try to analyse the points observed above. From the first we conclude that the
values must agree with the term frequencies so that they can affect the total
outcome. The second point reveals a problem. Outgoing links are subject for
punishment (negative value) whereas DSL members obviously should yield a high,
positive value. Which Heuristic should veto? Since the DSL apply for all
documents, we infer that HC-5b should overrule HC-1. The third case concerns
instances where a candidate is regarded likely to be the concept of another
document and the present one at the same time, due to membership in hyper

Table 6–10: The outcome of a term is determined by the total score, which is due to the effect
from each Heuristic. Some of the possible combinations are listed in the columns.

Heuristic t1 t2 t3 t4

HC-1 (Domain specific list) No Yes No Yes

HC-2 (Term frequency) Yes Yes Yes Yes

HC-3 (Emphasizers) No No No Yes

HC-4 (Meta and title) No No No No

HC-5a (Occurrences in different elements) No No No No

HC-5b (Punish outgoing links) No Yes Yes No

HC-6 (Incoming links pointing here?) No No Yes Yes

HC-8 (Punish document concept) No No No Yes

82

references. In order to resolve this conflict, we note that since links are only
assumed, not for certain, to be descriptive of their targets, the sum of the two
should neutralize each other. Finally, even though the first Heuristics seem to
assign plenty of positive values for an element, the same candidate is already
chosen as the document concept. It should therefore not be selected again as
concept for any element in the document. It is necessary for HC-8 to have a
negative value able to beat the sum of the positively minded Heuristics HC-1, HC-
3 and HC-6, also accounting for relatively high term frequencies.

Almost like solving a mathematical equation, appropriate values can be set. Note a
little trial and error will do in order to find values that satisfy all of the above
demands. As one solution, Figure 6–6 reveals how the results (the kw_source
facts) of an optimal set of Heuristics (the header section) differ from the setup used
for the other examples of this chapter, thus outlining the importance of committing
to appropriate values. Note that this is favourable rather than a limitation for the
system since it allows for a variation of proposed models made by the system.
Additionally the author can decide which Heuristics to apply or omit, the latter
being fruitful in case a collection of documents uses some tags for other purposes
than outlined in this thesis.

By leaving Heuristic HC-1 with a value of zero, i.e. neglecting the DSL, the final
DM would again turn out different. Note, however, that in the absence of a DSL,
both the conceptualization and the identification of the prerequisite relationship
type would suffer. In a similar fashion, we may expect the granularity of the DSL
regarding content to affect the grand total. Therefore both the DSL and the values

Figure 6–6: The values should be optimal in accordance with
 the observations listed in Table 6–10. Note that these values result in different

knowledge sources than the values used in Figure 6–1. Hence, other
concepts and relations are produced for the final domain model.

83

of the Heuristics can be regarded as tools for which we can experiment on the final
outcome.

6.3.2 An ocean of relations

The code for the relations can very easily be tested using any PROLOG
environment. For the four sample documents listed in appendix C (which is also
the basis for most of the screen-shots from this chapter), the results are clear: quite
a lot of relations were found, especially due to the parent- and synonym
contributions:

• 4 instances of the has_deeper_explanation relationship type were found.
• 1 instance of the external relationship type was found.
• 21 parent relations were found, some duplicates and bi-directional occurrences

were removed.
• 23 synonym relations were found.
• 0 prerequisite relations were found.

Note that even though zero prerequisites were found for the four documents, we
believe that the rules of Heuristics HR-6 and HR-7 are promising. During testing,
the rules correctly caught the prerequisite relationship as outlined in Figure 5–9
and Figure 5–10. Anyway, the figures are scary. Altogether 69 relations were
found. In comparison, only 11 unique concepts were found, which means that on
the average each concept has more than 6 relations. Of course these numbers may
differ on larger collections. Another important factor is the construction of the
sample documents. More profound testing and possible revision of the rules is
needed, but beyond the scope of this thesis. Questionable, therefore, how else can
we secure that the system performs tolerably well given the proposed framework?
Remember that the author has been quite silent all the way through, except when
creating the DSL and pushing some buttons in order to start the processes of
building the domain model. Let us therefore close up with putting a load on the
author.

6.3.3 Document concepts vs. element concepts

An early commitment as part of the process towards a domain model, was to
separate document concepts from element concepts. The decision was based on the
observation that documents have a context superior to its sections and other
subordinate documents. Indeed, the separation gave birth to the three different sets
of Heuristics for conceptualization, and later on proved convenient for the
identification of the parent relationship type.

As a side-effect, the separation also produced knowledge sources of different
granularity. First, the original documents were preserved and conceptualised with
the second attribute set to html, as exemplified in the kw_source fact

kw_source(softwar, html, “file3.html”,
 [interfac, intellig, user, direct, manipul], “file3.html”).

84

but also the elements of each document were written to individual smaller files,
like in

kw_source(dictionari, p, “file2.html#elm5”, [act, behalf] , “file2.html”).

From the latter example we see that both the ID and the element type p indicates
that this knowledge source originally was part of another document.

Is it useful to preserve both knowledge sources in the new knowledge base? One
goal of adaptation is to tailor new documents that differ from the original ones, if
more suitable for the user. The issue on document concepts versus element
concepts are important as they are an essential part of the foundation for the work.
We believed the system would benefit from this separation, but another view is that
the resulting domain model actually will be limited due to the choice. The
separation could in the worst case preserve the original hierarchy and structure so
much that the resulting domain model will not capture anything but the original
link structure. On the other hand, as indicated in Figure 6–7 there are two chooses
for how to view the present knowledge base:

Preserving original document structure along with an identification of elements,
are useful as it provides flexibility and the choice to suddenly “turn off” the
adaptive guidance provided from the system. The other view is that of the left side
from the figure, indicating that only the knowledge sources stemming from
element concepts should be regarded when generating adaptive documents. Note
that in this case the document concepts are still necessary for the identification of
the parent relations. We conclude that more empirical research is needed in order to
evaluate the positive and negative consequences of the separation of document
concepts and element concepts, along with the possibilities for adaptation.

Figure 6–7: The original domain consists of documents. After the conceptualization, a
knowledge base consisting of documents and elements (to the left) are the result. Another
view is to regard the knowledge sources stemming from the elements only (to the right).

85

6.3.4 Clean up the mess before the guests pay you
a visit

According to Zibell, Klare’s notion of “useful information” is still useful for web
designers today, almost 40 years later [Zibell00]. For traditional systems,
knowledge of the user’s knowledge level would help the author to suggest the
correct depth of concepts and organization of content. The resulting domain will be
static. For an adaptive hypertext system, the dynamic organization depends upon
how well the DM can be constructed. Starting with the DSL construction, the
following processes of analysis, element division and generation of relations are up
to the system, with a resulting domain model as the gift to the author. As seen, the
number of relations will probably get out of hand, but this does not mean that those
found are not useful for the author. Obviously, the task of removing incorrect or
unwanted relations and/or concepts, are a task a lot more pleasant for the author,
than creating an entire domain model from scratch. Additionally, recall that all the
important elements are sorted out of their original files and saved in a knowledge
base, with the references kept intact in the kw_source facts. In other words, the
present prototype of the system will indeed be expected to help the author in
preparing a static domain for dynamic, adaptive presentations.

Due to the possible imperfect outcome of the proposed DM and its implicit
assumption of well organised, consistently marked up documents, we would also
have to require a proper use of tags in order for the AHS to perform at its best. At
least the author should prepare existing documents for the system initially before

the automation starts1. For future adaptation we propose that new documents
should be composed with some guidelines in mind:

• Hyperlinks should be labeled so as to predict the content of the target.
• The domain should be well structured and decomposed into smaller documents.
• Knowledge sources on the same subject should be varied in different elements

like lists, images, tables, text etc. in order to enrichen the knowledge base.
• Emphasizers should be used with caution.
• If applied, the title element and meta information should predict the content of

each individual document well, and be varied among the domain documents.

The prototype does not handle poorly tagged documents, nested lists, and simply
skips advanced features like scripts and css.

1. The Tidy program is available from www.w3.org and helps to fix incorrect use of mark
up tags.

86

87

7 CONCLUSION

In this thesis we have explored means for assisting an author on the way towards a
domain model for an adaptive hypertext system. After identifying the main goal of
this thesis and exploring related research from the field of adaptivity, we proposed
an overall architecture for an AHS and then zeroed in on techniques for achieving a
domain model. More specifically, we found that the tags play an important role
regarding content of the documents, leading to Heuristics which secure the
extraction of concepts and the identification of relations among the concepts
selected. After implementing the conceptualizer module of the system, we briefly
sketched how easily relatively powerful adaptive presentations and variations of
adaptivity can be realised, facilitated by the use of the PROLOG language.

When hiking on the future trip towards adaptive systems, we believe the first hill to
climb is that of convincing authors that making an adaptive system is actually
manageable. From the author’s point of view, the effort should not be put into
redesigning existing documents, but rather in planning what sort of adaptive
behaviour to use.

The main goal of this research was to design an adaptive hypertext system that
could bridge user gap of knowledge in the context of a domain, developing
methods that facilitated the use of existing HTML-documents. In order to achieve
the desired flexibility, a domain model was needed. An analysis of some randomly
picked documents led to the observation that the tags actually would help to sort
out important keywords, leading to the hypothesis that the relative importance of
the elements combined with some basic IR-techniques would yield positive results
for the system. The rules that guided this process was based on Heuristics, which
in turn were drawn up from the characteristics and patterns of a relatively small set
of hypertext documents, along with our previous experience with HTML.

After implementing a prototype, an evaluation of the system in total revealed that
some rules produced far too many relations. Moreover, one might assume that the
methodology outlined in this thesis would not work equally well with all
collections of documents. Still we believe that the idea of combining the results of
rules and IR-techniques with more intelligent reasoning is fruitful, and that authors
will benefit from our methods.

Finally, as a digression, how can an AHS based on our design be published online?
The task should, theoretically, not be as complex as it might seem. Small scripts
(e.g. written in PHP) can arrange for the layout in order to prepare the system for
the Web. The plan is straightforward:

88

• The adaptive engine reasons on which knowledge sources are most appropriate to
present and instructs the script with a list of the respective IDs (i.e. filenames) to
be presented.

• The script in turn stitches together documents simply by including files from the
knowledge base into a standard template HTML file.

The decision to use the combination of C and PROLOG was based on a wish for
integrating the AHS routines into an existing agent based framework. Due to the
ease for C to communicate with both PHP and OpenGL both generation of
adaptive hypertext documents for the Internet today and interesting 2D or 3D
visualizations of the domain model should be achievable using agents.

As mentioned several times throughout the thesis, more research and intensive
testing is obviously needed in order to improve both the rules and some of the
framework, and validate the system. In addition to an online implementation of the
work of this thesis, the following are subject to future research:

• The development of an inference engine able to develop new rules to guide the
conceptualization

• The embedding of other techniques for extracting information in order to
increment the reliability of the system

• Applying better Heuristics for conceptualization that would fit a larger audience
• Test whether the development of various adaptive behaviours is indeed as simple

and promising as predicted in this thesis.
• Justify the selection of the split between document concepts and element

concepts, possibly trying other solutions.
• Embed techniques for visualization of the domain model and the user conceptual

models, e.g. allowing users to navigate their own mental models in a three
dimensional landscape.

89

References

Arens+93 Arens, Y. - Hovy, E. - Vossers, M. On the Knowledge Underlying
Multimedia Presentations, Intelligent Multimedia Interfaces, Maybury, M.
(ed.), AAAI/MIT Press, 1993 pp.280-306.

Ashish+97 Ashish, N. - Knoblock, C. Semi-Automatic Wrapper Generation for Internet
Information Sources, In Conference on Cooperative Information Systems,
1997, pp. 160-169.

Ashman+99 Ashman, H - Simpson, R. Computing Surveys’ Electronic Symposium on
Hypertext and Hypermedia: Editorial, ACM Computing Surveys, Vol. 31
(4), 1999.

Beck+96 Beck, J. - Stern, M. - Haugsjaa, E. Applications of AI in Education. ACM/
Crossroads, Vol 3, Issue 1, 1996.

Berners-Lee95 Berners-Lee, T. Style Guide for Online Hypertext. www.w3.org/provider/
style/all.html, unpublished, 1995.

Berners-Lee96 Berners-Lee, T. The World Wide Web: Past Present and Future.
www.w3.org/people/Berners-Lee/1996/ppf.html, unpublished1996.

Bodner+00 Bodner, R. - Chignell, M. Dynamic Hypertext: Querying and Linking. In
ACM Computing Surveys, Vol 31 (4), 1999, art 15.

Bradshaw97 Bradshaw, J. An introduction to Software Agents. AAAI Press/MIT Press,
1997, pp. 4-27.

Brusilovsky96 Brusilovsky, P. Methods and Techniques of Adaptive Hypermedia. User
modeling and user-adapted interaction vol 6, Kluwer Academic Publishers,
1996, pp. 87-129.

Brusilovsky01 Brusilovsky, P. Adaptive Hypermedia. User modeling and user-adapted
interaction 11, Kluwer Academic Publishers, 2001, pp. 87-110.

Brusilovsky+02 Brusilovsky, P. - Maybury, M. From Adaptive Hypermedia to the Adaptive
Web. Communications of the ACM, Vol 45 (5), 2002, pp. 30-33.

Bush45 Bush, V. As We May Think. Atlantic Monthly, 1945.

Chin91 Chin, D. Intelligent Interfaces as Agents, Intelligent User Interfaces,
Sullivan, J. - Tyler, S. (eds.), 1991, pp. 177-206.

Cohen00 Cohen, W. Automatically extracting features for concept learning from the
web, Seventeenth International Conference on Machine Learning, 2000.

da Silva+98 da Silva, D - van Durm, R - Duval, E - Olivié, H. Adaptive navigational
facilities in educational hypermedia, UK Conference on hypertext, 1998,
pp.291-292.

Davis+93 Davis, R - Shrobe, H - Szolovits, P. What is a Knowledge Representation?,
AI Magazine, 14(1), 1993, pp 17-33.

De Bra+99 De Bra, P - Brusilovski, P - Houben, G. Adaptive Hypermedia: From Systems
to Framework, ACM Computing Surveys 31, 4, www.acm.org/pubs/articles/
journals/surveys/1999-31-4es/a12-de_bra/a12-de_bra.pdf , 1999.

Denning99 Denning, P. Computer Science: the Discipline, In Encyclopedia of Computer
Science, 2000 Edition, 1999.

90

Fink+97 Fink, J - Kobsa, A, Schreck, J. Personalized Hypermedia Information
Provision through Adaptive and Adaptable System Features: User Modeling,
Privacy and Security Issues. Proceedings of International Conference on
User Modelling, Italy, 1997.

Fischer00 Fischer, G. User Modeling in Human Computer Interaction, User modeling
and user-adapted interaction 11, Kluwer Academic Publishers, 2001, pp. 65-
86.

Foley+88 Foley, J. - Gibbs, C. - Kim, W. - Kovacevic, S. A Knowledge-Based User
Interface Management System, In Proceedings of the 1988 Conference on
Human Factors in Computer Systems (CHI'88), ACM, Inc., 1988, pp. 67-72.

Frakes+92 Frakes, W. - Baeza-Yates, R. Information Retrieval, Data Structures &
Algorithms, Prentice Hall, New Jersey, 1992.

Griffin97 Griffin, D. Adaptivity and the Cohesive Nature of Hypertext Activity.
Dissertation Proposal, 1997.

Höök+99 Höök, K. - Svensson, M. Evaluating Adaptive Navigation Support. In
Maybury (Ed.) ACM Press, Proceedings of the IUI’99, 1999, pp 187.

Jennings99 Jennings, N. Agent-Based Computing: Promise and Perils, Proceedings of
Sixteenth International Joint Conference on Artifical Inelligence, IJCAI-99,
Vol. 2, 1999, pp 1429-1436.

Kietz+00 Kietz, J - Maedche, A - Volz, R. A Method for Semi-Automatic Ontology
Acquisition from a Corporate Intranet, In Aussenac-Gilles N., Biébow B.,
Szulman S., EKAW'2000 Workshop Ontologies and Texts, Juan-les-Pins,
2000, pp 37-50.

Kobsa+94 Kobsa, A. - Müller, D. - Nill, A. KN-AHS: An Adaptive Hyphertext Client of
The User Modeling System BGP-MS, Proceedings of the Fourth International
Conference on User Modeling, Hynnais, Association of Computing
Machinery, 1994, pp.99-105.

Kobsa01 Kobsa, A. Generic User Modeling Systems. In User Modeling and User-
Adapted Interaction, 11(1-2), 2001, pp. 49-63.

Koons+93 Koons, D. - Sparrell, C. - Thórisson, K. Integrating Simultaneous Input from
Speech, Gaze, and Hand Gestures, Intelligent Multimedia Interfaces,
Maybury, M. (ed)., AAAI/MIT Press, 1993, pp. 257-276.

Kules00 Kules. User Modeling For Adaptive And Adaptable Software Systems.
Available from http://www.otal.umd.edu/UUGuide/wmk/

Maes94 Maes, P. Agents that reduce work and information overload. Communication
of the ACM July 1994/Vol. 37, No. 7, 1994, pp. 31-40.

Malinowski+92 Malinowski, U. - Kuhme, T. - Dietrich, H. - Schneider-Hufschmidt, M. A
taxonomi of adaptive user interfaces. In Monk, Diaper, Harrison, editors,
People and Computers VII, Cambridge University Press, 1992, pp. 391-414.

Marinilli+99 Marinilli, M. - Micarelli, A. - Sciarrone, F. A Case Based Approach to
Adaptive Information Filtering for the WWW, in Proc. of the 2nd Workshop
on Adaptive Systems and User Modeling on the World Wide Web, Sixth
International Conference on User Modeling UM-99, Canada, 1999.

Maybury+98 Maybury, M. - Wahlster, W (eds.). Intelligent User Interfaces: An
Introduction. Readings in Intelligent User Interfaces, Morgan Kaufmann
Publisher, 1998, pp. 1-13.

McTear93 McTear, M. User Modelling for Adaptive Computer Systems: A Survey of
Recent Developments. Artificial Intelligence Review. (Special issue on User
Modelling, edited by M McTear), Vol 7, 1993, pp. 157-184.

91

Milosavljevic+98 Milosavljevic, M. - Oberlander, J. Dynamic Hypertext Catalogues: Helping
Users to Help Themselves. Proc 9th ACM Conference on Hypertext and
Hypermedia, Pittsburg, 1998.

Möller Möller, R. User Interface Management Systems: The CLIM Perspective,
University of Hamburg,http://kogs-www.informatik.uni-hamburg.de/
~moeller/uims-clim/clim-intro.html

Moore+01 Moore, A. - Brailsford, T. - Craig, D. Adaptive navigational facilities in
educational hypermedia, Hypertext ’01, Denmark, 2001.

Myers94 Myers, B. Challenges of HCI Design and Implementation, ACM
Interactions, Jan 1994, pp. 73-83.

Nechest+93 Nechest R. - Foley J. - Szekely P. - Sukaviriya P. - Luo P. - Kovacevic S. -
Hudson S. Knowledgeable Development Environments using Shared Design
Models, Proceedings of Intelligent User Interfaces IUI93, 1993, pp. 63-93.

Nielsen92 Nielsen, J. The Usability Engineering Lifecycle, IEEE Computer, March
1992, pp. 12-22.

Perkowitz+00 Perkowitz, M. - Etzioni, O. Adaptive Web Sites. Communications of the
ACM, Vol 43 (8), 2000, pp. 152-158.

Rautenbach+90 Rautenbach, P. - Totterdell, P. Adaptation as a problem of design. In
Adaptive User Interfaces, London: Academic Press, Browne, D. - Totterdell,
P. - Norman, M. (eds.) 1990, pp. 59-84.

Rich79 Rich, E. User Modeling via Stereotypes, Cognitive Science. 3, 1979, pp. 329-
354.

Schank95 Schank, R. Information is Surprises. www.edge.org/documents/
ThirdCulture/q-Ch.9.html.

Schneiderman+97 Schneiderman, B, Maes, P. Direct Manipulation vs Interface Agents, ACM
Interactions. Volume IV.6, Nov 1997. pp. 42-61.

Schneiderman00 Schneiderman, B. Universal Usability, Communications of the ACM.
Volume 43, May 2000. pp. 85-91.

Seligman+91 Seligman, D. - Feiner, S. Automated Generation of Intent-Based 3D
illustrations. Computer Graphics, 25(4), 1991, pp. 123-132.

Sharma01 Sharma, A. A generic Architecture for User Modeling Systems and Adaptive
web services. Delhi College of Engineering, New Delhi.

Stefani+99 Stefani, A - Strapparava, C. Exploiting NLP techniques to build user model
for Web sites: the use of WordNet in SiteIF Project. Proceedings of the 2nd
Workshop on Adaptive Systems and User Modeling on the WWW, Canada,
1999, Edited by Peter Brusilovsky and Paul De Bra, pp. 13-20.

Sukaviriya+93 Sukaviriya, P. - Foley, J. Supporting Adaptive Interfaces in a Knowledge-
based User Interface Environment. Proceedings of Intelligent User Interfaces
IUI93, 1993, pp. 107-113.

Thomassen99 Thomassen, A. Automating GOMS evaluation in agent based user interfaces.
Report, Norwegian University of Science and Technology, 1999.

Tveit01 Tveit, A. A survey of Agent-Oriented Software Engineering. Report,
Norwegian University of Science and Technology, 2001.

Wahlster91 Wahlster, W. User and Discourse Models for Multimodal Communication.
Sullivan, J. and Tyler, S.,(eds). Intelligent User Interfaces, ACM Press, 1991,
pp. 45-67.

92

Wahlster+93 Wahlster, W. - André, E. - Finkler, W. - Profitlich, H. - Rist, T. Plan-Based
Integration of Natural Language and Graphics Generation, Artificial
Intelligence 63(1-2), Elsevier Science-NL, 1993, pp. 387-427.

Weber+97 Weber, B. - Specht, M. User Modeling and Adaptive Navigation Support in
www-based Tutoring Systems, Proceedings of User Modeling '97, 1997, pp.
289-300.

Wu+01 Wu, H. - de Kort, E - De Bra, P. Design issues for general-purpose adaptive
hypermedia systems, Proceedings of the ACM Conference on Hypertext and
Hypermedia, Denmark 2001, pp. 141-150.

w3 Home page of the World Wide Web Consoritum, www.w3.org

whatis online computer dictionary, www.whatis.com

Zibell00 Zibell, K. Klare’s "Useful Information" is Useful for Web Designers, ACM
journal of Computer Documentation, vol 24 (3), 2000, pp. 141-147.

93

Appendix A - Source documents

file1.html

<HTML>
<HEAD>

<TITLE>Agent overview</TITLE>
<META>Software agents, agent definition</META>

</HEAD>

<BODY>

<H1>What is an agent?</H1>
There are several interpretations of the meaning behind the term <I>agent</I>, and
therefore the term is not a strong one. Two main approaches attempt to define an
agent:
<OL TYpe="I">

 Ascription made of a person (what they are). An agent has different
 meanings for two people. Sometimes the agent-based approach fits the
 expectations of the programmer, sometimes it does not and should not be
 used. It should take the situation into account and provide feasibilities
 like reasoning.

 Description of the attributes of an agent (what they do). A
 software entity that functions continuosly, autonomously and inhabitated by
 other agents. This means it should learn from experience and cooperate with
 his friends. Here you can find some attributes of
 an agent

Do you wonder why software agents are appealing?
Pattie Maes is often debating agenthood.

</BODY>
</HTML>

94

file2.html

<HTML>
<HEAD>

<META>Agent characteristics</META>
</HEAD>

<BODY>

<H1>Agent characteristics</H1>

The following attributes are common to find in an agent:

 <I>Reactivity</I> - ability to sense and then act on its environment (it
 reacts on some stimuli it senses)

 <I>Proactivity</I> - ability to start something itself, autonomously
 <I>Collaboration</I> - work in concert with others
 <I>Communication</I> with a person should be non-symbolic, but rather

 natural language-like
 Use of <I>models</I> to infer new knowledge
 <I>Continuity</I> persistent over time
 <I>Adapting</I> to its environment, and learning from experience
 <I>Mobility</I> - move itself from one place to another

<H1>Definitions</H1>

Gilbert uses a three-dimensional space to characterize agenthood:
 <ol style='margin-top:0cm' >
 Degree of Agency - how autonomous is the agent?
 Degree of Mobility - how much travel from machine to machine does the
 agent do?

 Degree of Intelligence - Is reasoning and learning provided?

<P>Nana uses another classification resulting in four possible agent-types:
 Smart, Collaborative, Collaborative that learns and Interface-agents. </P>

<p>Dictionary: One that acts on your behalf</p>

</BODY>
</HTML>

95

file3.html

<HTML>
<HEAD>

<META>Software agents, direct manipulation interface agent</META>
</HEAD>

<BODY>

<H1>Why software agents?</H1>

Two motivations:

 Simplifying distributed computing. Today's applications only
 cooperate in the most basic ways (file transfer, DB-queries etc). The web
 has evoluted from this basic communication to the
 <EM ONCLICK="ordlisteVindu('../ordliste.html#adhoc')" STYLE="cursor:hand">
 ad-hoc to the encapsulated message passing systems, all meaning low
 levels of interoperability. There is a need for intelligent
 cooperation among systems to optimize the work-processes towards goals.
 To increase the level of interoperability in small systems, an agent could
 serve as a global resource manager. For larger systems, embedding
 peer-agents for each system may increase intelligence.

 Overcoming user interface problems. Direct manipulation has
 limitations like

<TABLE border=1 CELLSPACING=2 WIDTH="90%" ALIGN="center">
<TR><TH>Limitations of direct manipulation</TH><TH>Advantages of agents</TH></TR>
 <TR>
 <TD>
 large spaces to be searched
 difficult to schedule tasks

 hard to make basic actions higher-level ones
 consistency means predictable interfaces, but this is not so for complex

 tasks
 software is function oriented rather than concerned with context of the
 task and situation

 repetetive actions are not learned

 </TD>

 <TD>
 search and filtering mechanisms of the agent run in the background, help
 constrain the search space
 event-driven actions/wake up on response
 share our goals, they don't simply process our commands
 may work around unforseen problems
 account for context of the user's tasks and situation
 learn from repetetive patterns

 </TD>
 </TR>
</TABLE>

As debated in the article "Direct Manipulation vs
Interface Agents" the two are complementary rather than mutually exclusive.
It is difficult to find a golden way between proactive and reactive behavior.

</BODY>
</HTML>

96

file4.html

<HTML>
<HEAD>

<META>Ben Schneiderman Pattie Maes Debating</META>
</HEAD>

<BODY>

<H1>Debating...</H1>

Ben:

 Anthropomorphic interfaces are not the future of computing.
 Great that Pattie is moving away from the "agent as living entity on

 screen"-vision
 Collaborative filtering will be important in the future.
 Adaptive features should appear as non-adaptation to the user, to be

 predictable. So adaptation must not lead to unpredictability.
 The user need to feel he did the job himself (not some magical agent)
 Words like smart, agent, intelligent etc mislead the designer to leave out

 important things in the user interface.
 A good thing to make the user model available for the user, but that is not

 being done today in most agent-systems
 Speech (NL) is not the future because it make use of the short-term memory

 and working memory. This degrades the level of performance. You do problem
 solving better when you use direct manipulation than speech.

 When it comes to the issue of critical time-restricted systems that should
 avoid mistakes, I think the essence is in designing a very simple interface
 (according to Foley)

 Even blind people may use direct manipulation, because they are strong at
 spatial processing.

 Agent litterature does not focus enough on the user interface!

Pattie:

 Agents could work below the table, with a nice, possibly direct
 manipulation interface, that the user sees.

 Important to distinguish software agents from
 other agents.

 The disagreement is mainly due to us focusing on different problem domains.
 Ben looks at a structured task-domain with professional users, while I
 focus with end-users that are novices in a dynamic domain.

 Agree that speech is difficult. A lot of ambiguity has to be solved. But
 the agent-approach could use speech in multilingual
 input-features.

 It is difficult for an agent to always do the right thing, so therefore i
 have focused on areas where things need not be 100 % correct.

 As complexity increases, so does the need for delegation.

</BODY>
</HTML>

97

Appendix B - Results from
conceptualization

Original document size: 289 words

The technique proposed is based on two interesting observations concerning the very
nature of hyperspaces. Firstly, documents in a hyperspace don’t need a predefined
curriculum (like text-books do), but allow for linkage among documents. This in turn
leads to a more natural decomposition of large documents into smaller ones that are linked
together. Secondly, formatting a document normally involves the identification of
important concepts of the text, and these normally get emphasized in some way by the
author in order to improve readability. Now the importance of the HTML-tags should come
clear: As noted above, HTML-files contain the formatting tags along with the text.
Assuming that the author have structured and linked the documents (intelligently) while
marking up important concepts within a document, we now have another (untraditional) way
of extracting information from a document regarding its content. Different tags have
different purposes and therefore is of varying importance. Therefore a predefined base of
rules that tells what to do when encountering tags, yields both power and flexibility to
the process of analysing HTML-documents. New rules may be easily added to the base without
changing the implemented adaptive system if the base is explicit to the system. An
appealing strategy seems to be as follows: "parse the document until a useful tag is run
into. Analyse the information within the tag based on the rules from the rulebase. Do the
appropriate action as told by the rule (i.e. retag/conceptualize the information), and
continue parsing. When the end of the document is reached, a list of concepts and
relations should be the result. This list is the basis for constructing the semantic
network. (Perhaps that list is the semantic network, if nodes are written to a prolog-
knowledgebase as new concepts are encountered...?)

When stopwords and lexical analysis is perfomed, 133 terms remain

technique proposed based observations concerning nature hyperspaces firstly documents
hyperspace don predefined curriculum text books allow linkage documents leads natural
decomposition documents ones linked secondly formatting document normally involves
identification concepts text normally emphasized author improve readability importance
html tags noted html files contain formatting tags text assuming author structured linked
documents intelligently marking concepts document untraditional extracting information
document regarding content tags purposes varying importance predefined base rules tells
encountering tags yields power flexibility process analysing html documents rules easily
added base changing implemented adaptive system base explicit system appealing strategy
follows parse document useful tag run analyse information tag based rules rulebase
appropriate action told rule retag conceptualize information continue parsing document
reached list concepts relations result list basis constructing semantic network list
semantic network nodes written prolog knowledgebase concepts encountered

When stemming is applied, 133 words (46% of original size) remain

techniqu propos base observ concern natur hyperspac firstli docum hyperspac don predefin
curriculum text book allow linkag docum lead natur decomposit docum on link secondli
format docum normal involv identif concept text normal emphas author improv readabl
import html tag note html file contain format tag text assum author structur link docum
intellig mark concept docum untradit extract inform docum regard content tag purpos vary
import predefin base rule tell encount tag yield power flexibl process analys html docum
rule easili ad base chang implem adapt system base explicit system appeal strategi follow
pars docum us tag run analys inform tag base rule rulebas appropri action told rule retag
conceptu inform continu pars docum reach list concept relat result list basi construct
semant network list semant network node written prolog knowledgebas concept encount

98

Removing duplicates further improves slightly: 87 words
(30% of the original size)

action ad adapt allow analys appeal appropri assum author base basi book chang concept
conceptu concern construct contain content continu curriculum decomposit docum don easili
emphas encount explicit extract file firstli flexibl follow format html hyperspac identif
implem import improv inform intellig involv knowledgebas lead link linkag list mark natur
network node normal note observ on pars power predefin process prolog propos purpos reach
readabl regard relat result retag rule rulebas run secondli semant strategi structur
system tag techniqu tell text told untradit us vary written yield

Example of Report:

Document candidates of file4.html

debat: 252
mae: 231
user: 109
interfac: 105
adapt: 103
domain: 103
intellig: 101
model: 101
: 51
patti: 34
ben: 33
schneiderman: 31
speech: 4
futur: 3
direct: 3
manipul: 3
design: 2
system: 2
memori: 2
solv: 2
focu: 2
focus: 2
difficult: 2
anthropomorph: 1
comput: 1
move: 1
live: 1
entiti: 1
screen: 1
vision: 1
collabor: 1
filter: 1
appear: 1
predict: 1
lead: 1
unpredict: 1
feel: 1
job: 1
magic: 1
word: 1
smart: 1
mislead: 1
leav: 1
avail: 1
nl: 1
short: 1
term: 1
degrad: 1

99

level: 1
perform: 1
come: 1
issu: 1
critic: 1
time: 1
restrict: 1
avoid: 1
mistak: 1
essenc: 1
simpl: 1
blind: 1
peopl: 1
spatial: 1
process: 1
litteratur: 1
below: 1
nice: 1
possibli: 1
distinguish: 1
disagr: 1
mainli: 1
due: 1
look: 1
structur: 1
task: 1
profession: 1
novic: 1
dynam: 1
agre: 1
lot: 1
ambigu: 1
approach: 1
correct: 1
complex: 1
increas: 1
deleg: 1
agent: -90
featur: -198
folei: -198
accord: -199
softwar: -199
cubricon: -199
multilingu: -199

 Element candidates of file4.html#elm0 of elementtype: h1
debat: -399
: -399

 Element candidates of file4.html#elm1 of elementtype: ul
user: 106
agent: 105
interfac: 104
adapt: 103
intellig: 101
model: 101
futur: 3
design: 2
system: 2
speech: 2
memori: 2
direct: 2
manipul: 2
folei: 2
anthropomorph: 1

100

comput: 1
patti: 1
move: 1
live: 1
entiti: 1
screen: 1
vision: 1
collabor: 1
filter: 1
featur: 1
appear: 1
predict: 1
lead: 1
unpredict: 1
feel: 1
job: 1
magic: 1
word: 1
smart: 1
mislead: 1
leav: 1
avail: 1
nl: 1
short: 1
term: 1
degrad: 1
level: 1
perform: 1
solv: 1
come: 1
issu: 1
critic: 1
time: 1
restrict: 1
avoid: 1
mistak: 1
essenc: 1
simpl: 1
accord: 1
blind: 1
peopl: 1
spatial: 1
process: 1
litteratur: 1
focu: 1
: -399

 Element candidates of file4.html#elm2 of elementtype: ul
agent: 105
user: 103
domain: 103
interfac: 101
focus: 2
speech: 2
difficult: 2
below: 1
nice: 1
possibli: 1
direct: 1
manipul: 1
distinguish: 1
softwar: 1
disagr: 1
mainli: 1
due: 1
ben: 1
look: 1

101

structur: 1
task: 1
profession: 1
focu: 1
novic: 1
dynam: 1
agre: 1
lot: 1
ambigu: 1
solv: 1
approach: 1
cubricon: 1
multilingu: 1
featur: 1
correct: 1
complex: 1
increas: 1
deleg: 1
: -399

102

103

Appendix C - Results from PROLOG rules

Facts produced by the PROLOG rules. Altogether, the relations, the concepts and the
knowledge sources constitute the domain model.

We start by making concepts, and thereafter ask which relations were found.
?- reconsult('C:\\svend prolog\\hr1_2.pro')
yes
?- make_concept.
yes

?- concept(C).

C = definit ;
C = agent ;
C = agent ;
C = reactiv ;
C = autonom ;
C = interfac ;
C = dictionari ;
C = softwar ;
C = intellig ;
C = agent ;
C = debat ;
C = user ;
C = agent ;
C = foley ;
no

This is the output of the PROLOG environment used, but internally,
the facts hold the form listed below:

concept(agent).
concept(autonom).
concept(debat).
concept(definit).
concept(dictionari).
concept(foley ;
concept(intellig).
concept(interfac).
concept(reactiv).
concept(softwar).
concept(user).

?- reconsult('C:\\svend prolog\\hr1_2.pro')
yes
?- hr1.
yes
?- hr2.
yes
?- relation(R,E,T).

relation(has_deeper_explanation, definit, agent).
relation(has_deeper_explanation, definit, softwar).
relation(has_deeper_explanation, agent, softwar).
relation(has_deeper_explanation, softwar, debat).

relation(external, debat, foley).

The same procedure with finding the relations and asking which were found, yields the
following results:

relation(parent, agent, reactiv).
relation(parent, agent, autom).
relation(parent, agent, dictionari).
relation(parent, agent, interfac).

104

relation(parent, agent, user).
relation(parent, autom, intellig).
relation(parent, debat, interfac).
relation(parent, debat, user).
relation(parent, debat, agent).
relation(parent, definit, agent).
relation(parent, definit, autom).
relation(parent, intellig, agent).
relation(parent, intellig, interfac).
relation(parent, intellig, user).
relation(parent, reactiv, autom).
relation(parent, softwar, intellig).
relation(parent, softwar, agent).
relation(parent, softwar, interfac).
relation(parent, softwar, intellig).
relation(parent, softwar, user).
relation(parent, user, interfac).

relation(synonym, agent, debat).
relation(synonym, agent, reactiv).
relation(synonym, agent, user).
relation(synonym, autonom, softwar).
relation(synonym, autonom, user).
relation(synonym, debat, user).
relation(synonym, definit, agent).
relation(synonym, definit, reactiv).
relation(synonym, intellig, agent).
relation(synonym, intellig, debat).
relation(synonym, intellig, user).
relation(synonym, interfac, agent).
relation(synonym, interfac, debat).
relation(synonym, interfac, intellig).
relation(synonym, interfac, softwar).
relation(synonym, interfac, user).
relation(synonym, reactiv, debat).
relation(synonym, reactiv, interfac).
relation(synonym, reactiv, user).
relation(synonym, softwar, agent).
relation(synonym, softwar, debat).
relation(synonym, softwar, intellig).
relation(synonym, softwar, user).

Finally, when asking for HR6 and HR7, nothing is found.

?- reconsult('C:\\svend prolog\\hr6.pro')
yes
?- hr6.

no
?- reconsult('C:\\svend prolog\\hr7.pro')
yes
?- hr7.

no

105

Appendix D - PROLOG implementation

kw_source(definit, html, "file1.html", [autonom, ascript, descript, mean, term, approach] , "file1.html").
kw_source(agent, ol, "file1.html#elm1", [autonom, ascript, descript, mean, sometim, attribut] , "file1.html").
kw_source(agent, html, "file2.html", [characterist, attribut, reactiv, proactiv, model, adapt] , "file2.html").
kw_source(reactiv, ul, "file2.html#elm1", [proactiv, model, adapt, autonom, knowledg, collabor] , "file2.html").
kw_source(autonom, ol, "file2.html#elm3", [intellig, degre, machin, margin, top] , "file2.html").
kw_source(interfac, p, "file2.html#elm4", [interfac, collabor, nana, classif, result, type] , "file2.html").
kw_source(dictionari, p, "file2.html#elm5", [act, behalf] , "file2.html").
kw_source(softwar, html, "file3.html", [interfac, intellig, user, direct, manipul] , "file3.html").
kw_source(intellig, ol, "file3.html#elm1", [user, interfac, agent, cooper, simplifi, distribut] , "file3.html").
kw_source(agent, table, "file3.html#elm2", [interfac, user, proactiv, reactiv, task, search] , "file3.html").
kw_source(debat, html, "file4.html", [mae, user, interfac, ben, adapt, domain] , "file4.html").
kw_source(user, ul, "file4.html#elm1", [agent, interfac, adapt, intellig, model, futur] , "file4.html").
kw_source(agent, ul, "file4.html#elm2", [user, domain, interfac, focus, speech, difficult] , "file4.html").
kw_source(foley, html, "../341/foley.html", [norman] , "../341/foley.html").

lowerList("file4.html", [speech, futur, direct, manipul, design, system]).
lowerList("file4.html#elm1", [design, system, speech, memori, direct]).
lowerList("file4.html#elm2", [softwar, disagr, mainli, due, ben]).

href("file1.html", "file2.html", "attributes").
href("file1.html", "file3.html", "why software agents").
href("file1.html", "file4.html#pattie", "pattie maes").
href("file2.html", "file3.html", "acts on your behalf").
href("file3.html", "file4.html", "direct vs interface agents").
href("file4.html", "file3.html", "software agents ").
href("file4.html", "../341/foley.html", "according to foley").
name("file4.html", "pattie", "pattie").

make_concept :-
 kw_source(ConceptName, _ , _ , _ , _) ,
 assert(concept(ConceptName)) ,
 fail.
 % fail forces backtracking so that every combination is tried

make_concept.
 %when everything is tried and the above rule fails, this one succeeds

%---
% HR-1: Hyper references between two knowledge entities somewhere within
% the domain are relations of type has_deeper_explanation
% between the corresponding concepts.
%---

hr1 :-
 href(From, To, _) ,
 kw_source(ConceptA, _ , From, _ , _) ,
 kw_source(ConceptB, _ , To, _ , _) ,
 assert(relation(has_deeper_explanation, ConceptA, ConceptB)) ,
 fail. % forces backtracking

hr1. % ensure success

%---
% member is recursively defined and finds out whether an X is in a list.
% It is used thoroughly in the following.
%---

member(X, [X | Tail]).
member(X, [Head | Tail]) :-
 member(X, Tail).

%---
% The domain is constrained to a list of valid filenames, here exemplified
% with three files only. The rule outsideDomain checks for membership in
% the domain list.
%---

domain(["file1.html", "file2.html", "file3.html", "file4.html"]).

outsideDomain(F) :-
 domain(D) ,
 not member(F, D).

%---
% HR-2: External links with destinations outside of the domain
% are slightly different from internal ones, and the corresponding
% relations should be labelled as external.
%---

hr2 :-
href(From, To, _) ,
 outsideDomain(To) ,
 kw_source(ConceptA, _ , From, _ , _) ,
 kw_source(ConceptB, _ , To, _ , _) ,
 assert(relation(external, ConceptA, ConceptB)),
 fail. % forces backtracking

hr2. % ensure success

106

%---
% HR-3: All element concepts found within a document are children
% of the document concept.
%---

hr3 :-
 kw_source(DocumentConcept, html, _ , _ , File) ,
 kw_source(ElementConcept, _ , _ , _ , File) ,
 not DocumentConcept = ElementConcept ,
 assert(relation(parent, DocumentConcept, ElementConcept)) ,
 fail. % forces backtracking

hr3. % ensure success

%---
% member is recursively defined and finds out whether an X is in a list.
% It is used thoroughly in the following.
%---

member(X, [X | Tail]).
member(X, [Head | Tail]) :-
 member(X, Tail).

%---
% HR-4: There is a parent relation if a member from a set of
% candidate concepts equals an already found concept.
%---

hr4 :-
 kw_source(ConceptA, _ , _ , CandidateList, _) ,
 kw_source(ConceptB, _ , _ , _ , _) ,
 not ConceptA = ConceptB , % the two concepts should not be equal
 member(ConceptB, CandidateList) ,
 not relation(parent, ConceptA, ConceptB) , %only consider once
 assert(relation(parent, ConceptA, ConceptB)) ,
 fail. % forces backtracking

hr4. % ensure success

%---
% Removes bi-directional relations
%---

removeBidirectional :-
 relation(Type, ConceptA, ConceptB) ,
 relation(Type, ConceptB, ConceptA) ,
 retract(relation(Type, ConceptB, ConceptA)) , %remove one
 fail. % forces backtracking

removeBidirectional. % ensure success

%---
% HR-5: If two concepts have some joint members from their
% set of candidates, the concepts are synonymous.
%---

commonMember(List1, List2) :-
 member(Term, List1) ,
 member(Term, List2).

hr5 :-
 kw_source(ConceptA, _ , _ , CandidateListA, _) ,
 kw_source(ConceptB, _ , _ , CandidateListB, _) ,
 commonMember(CandidateListA, CandidateListB) ,
 not ConceptA = ConceptB ,
 not relation(synonym, ConceptA, ConceptB) ,
 assert(relation(synonym, ConceptA, ConceptB)) ,
 fail. % forces backtracking

hr5. % ensure success

make_concept :-
 kw_source(ConceptName, _ , _ , _ , _) ,
 assert(concept(ConceptName)) ,
 fail.
 % fail forces backtracking so that every combination is tried

make_concept.
 %when everything is tried and the above rule fails, this one succeeds

%---
% member is recursively defined and finds out whether an X is in a list.
% It is used thoroughly in the following.
%---

member(X, [X | Tail]).
member(X, [Head | Tail]) :-
 member(X, Tail).

107

%---
% Lower score terms are listed as PROLOG facts, here illustrated with
% three examples. Note that the lists in lowerList and kw_source
% together constitute all the terms surviving lexical analysis.
%---

lowerList("file4.html", [speech, futur, direct, manipul, design, system]).
lowerList("file4.html#elm1", [design, system, speech, memori, direct]).
lowerList("file4.html#elm2", [softwar, disagr, mainli, due, ben]).

inLowerList(Term, Location) :-
 lowerList(Location, Z) ,
 member(Term, Z).

%---
% The domain specific list contains terms that are regarded important,
% here exemplified with seven terms only.
%---

domainSpecificList([hci, adapt, iui, user, model, domain, intellig]).

inDsl(Term) :-
 domainSpecificList(DSL) ,
 member(Term, DSL).

%---
% HR-6: A term in a knowledge source KS_1 which is neither selected as
% concept nor in the upper list of candidates, yet a member of the DSL
% and chosen as concept for another knowledge source KS_2,
% is prerequisite to the concept of the first knowledge source KS_1.
%---

hr6 :-
 inLowerList(Term, Location) ,
 inDsl(Term) ,
 kw_source(Concept , _ , Location, _ , _) ,
 concept(Term) ,
 %does the concept of the source equals the term?
 assert(relation(prerequisite, Term, Concept)) ,
 %if so, then make a relation between the two.
 fail. % forces backtracking

hr6. % ensure success

%---
% There is a path between two nodes if there is an edge from the first
% node to an intermediate node, which again has a path to the destination
% node. This code also adds the nodes to the head of a list.
%---

path(From, To, [To]) :-
 href(From, To, _).

path(From, To, [Intermediate|Tail]) :-
 href(From, Intermediate, _),
 path(Intermediate, To, Tail).

%---
% This rule asserts prerequisite relations from the intermediate
% members of a path to the last node
%---

addToSet([Head|Tail], ToConcept) :-
 kw_source(FromConcept, _ , Head, _ , _) ,
 not FromConcept = ToConcept , %write relation if the concepts differ
 assert(relation(prerequisite, FromConcept, ToConcept)) ,
 addToSet(Tail, ToConcept) , %move down the path

addToSet([], _). %trivial case

108

%---
% HR-7: In the presence of a relation between two concepts, together with
% an unique, explicitly stated path through interlinked nodes connecting
% the two corresponding knowledge sources, there is a set of prerequisite
% relations between the concepts of each node (but the first one), and
% the destination of the path.
% Note that the procedure removes the original relationship type if
% some prerequisites are found
%---

hr7 :-
 relation(Type, ConA, ConB) , %if any relation exists
 kw_source(ConA , _ , From, _ , _) , %we go get the
 kw_source(ConB , _ , To, _ , _) , %destinations
 path(From, To, Visited) , %is there an explicitly stated path?
 addToSet(Visited, ConB) , %add all relations along this path
 retract(relation(Type, ConA, ConB)) , %remove original relation
 fail. % forces backtracking

hr7. % ensure success

%--
% The rule next(Concept) finds a gap and builds a bridge, that is a list
% of concepts that can be visited next. Note that this routine does not
% validate the prerequisites of the concepts in the gap.
%---

deletepossible(Item, _ , []).
deletepossible(Item, [Item|Tail] , Tail).
deletepossible(Item, [Y|Tail] , [Y|Tail2]) :-
 deletepossible(Item, Tail, Tail2).

insert(X, List, BiggerList) :- %insert is the inverse of delete
 delete(X, BiggerList, List).

findGap([] , R, R). %trivial case
findGap(DMList, [Head|Tail], GapList):-
 deletepossible(Head, DMList, IntermediateList) ,
 %deletes common members
 findGap(Tail, IntermediateList, GapList).

all(Concept, ListIn, ListOut) :- %go get all neighbours
 relation(_ , Concept, Next) ,
 not member(Concept, ListIn) ,
 all(Concept, [Next|ListIn], ListOut).
all(C, List, List). %trivial case

getNeighbour(Concept, DMList) :- %get neigbours to a concept in DM
 all(Concept, [], DMList).

userKnows(Concept, UMList) :- %get concepts known to the user.
 all2(Concept, [], UMList). %almost equal to all, except that
 %relation in all is the DM relation,
 %and relation i all2 is UM relation.

next(Concept) :-
 getNeighboursDM(Concept, DMList) , %list all neighbours from DM
 userKnows(Concept, UMList) , % build list of neighb. known to user
 findGap(DMList, UMList, GapList) , %subtract UM from DM

109

Appendix E - Implementation of conceptualizer

/******************************* conceptualization.c ********************************
 *
 * Purpose: Program to walk through a domain and identify concepts at both
 * document and element level according to heuristical rules
 * Date: June 30th-July 2nd, 2002
 * Input: List of files in the domain
 * Output: Prolog files on the form:
 * node(software, file3.html, [agents, agent, user,]).
 * node(agents, file3.html#sub0, [software,]).
 * node(interface, file3.html#sub1, [user, intelligent, agents,]).
 * etc...
 * Report files with all information (one file for each document)
 * Uses: ruleadt.h- implementation of rules
 * Notes: Temporary files are used due to easy manipulation with stringlists
 * The functions ReportDocCandidates, ReportElmCandidates, InitPrologFile
 * and ReportPrologFile, are used in main.
***/

#include <stdio.h>
#include <string.h>
#include "ruleadt.h"

/***
 * Name: ReportDocCandidates
 * Purpose: Update reportfile with all candidates and values in a document
***/
ReportDocCandidates(CVR *record, char filename[NAME_SIZE],
 char current[NAME_SIZE], int boundary){
 char tuple[NAME_SIZE];
 CVR *temp;
 FILE *reportfile;
 int i = 0;

 reportfile = fopen(filename, "a+");
 fprintf(reportfile, "\t\t\t Document candidates of %s \n", current);
 strcpy(tuple, "");
 temp=record; //don't want to miss the array for good

 while (i++ < boundary){
 sprintf(tuple, "%s: %d\n", temp->candidate, temp->value);
 fputs(tuple, reportfile);
 temp++;
 }//print
 fputs("**********************************\n\n\n", reportfile);
 fclose(reportfile);
}//ReportDocCandidates

/***
 * Name: ReportElmCandidates
 * Purpose: Update reportfile with all candidates and values in an element
***/
ReportElmCandidates(CVR *record, char filename[NAME_SIZE],
 char id[NAME_SIZE], char tag[TAG_SIZE], int boundary){
 char tuple[NAME_SIZE];
 CVR *temp;
 FILE *reportfile;
 int i = 0;

 reportfile = fopen(filename, "a+");
 fprintf(reportfile, "\t\t\t Element candidates of %s of elementtype: %s \n", id, tag);
 strcpy(tuple, "");
 temp=record; //don't want to miss the array for good!

 while (i++ < boundary){
 sprintf(tuple, "%s: %d\n", temp->candidate, temp->value);
 fputs(tuple, reportfile);
 temp++;
 }//print
 fputs("-----------------\n\n\n", reportfile);
 fclose(reportfile);
}//ReportElmCandidates

/***
 * Name: InitPrologfiles
 * Purpose: Writes the values as a comment to the prolog-file.
***/
InitPrologfiles(char f[NAME_SIZE], char f2[NAME_SIZE],
 int H1, int H3, int H4, int H5a, int H5b, int H6, int H8){
 FILE *fp, *fp2;

 fp = fopen(f, "w");

110

 fprintf(fp, "%% ---\n");
 fprintf(fp, "%% The points associated with the Heuristics: \n");
 fprintf(fp, "%% \t HC-1 (DSL) = %d \t\t HC-2 (term frequency) = TF \n", H1);
 fprintf(fp, "%% \t HC-3 (emphasizers) = %d \t\t HC-4 (meta information) = %d \n", H3, H4);
 fprintf(fp, "%% \t HC-5a (headings) = %d \t\t HC-5b (punish links) = %d \n", H5a, H5b);
 fprintf(fp, "%% \t HC-6 (linked to) = %d \t\t HC-8 (punish doc_con) = %d \n", H6, H8);
 fprintf(fp, "%% Attributes: (concept, element type, location, candidate list)\n");
 fprintf(fp, "%% ---\n\n");
 fclose(fp);

 fp2 = fopen(f2, "w");
 fprintf(fp2, "%% ---\n");
 fprintf(fp2, "%% All hyper references in the domain \n");
 fprintf(fp2, "%% Attributes: (from, to, tag)\n");
 fprintf(fp2, "%% ---\n\n");
 fclose(fp2);
} //InitPrologfiles

/**
 * Name: ReportPrologFile
 * Purpose: Writes concept to file in prolog-format. Should have the form:
 * node(concept, element-type, loc, [cand1, cand2, ...], filename).
 * in order to represent the node, the location and other candidates
 * Note: a bit tricky to achieve the correct layout form
 * Returns: True if this element was successfully written to the file
***/
int ReportPrologFile(char fprolog[NAME_SIZE], char fprolog_non[NAME_SIZE],
 char tagName[TAG_SIZE], char location[NAME_SIZE],
 CVR *array, int boundary, char tempfile[NAME_SIZE],
 char combfile[NAME_SIZE], char thisfilename[NAME_SIZE]){
 FILE *fp;
 char high[NAME_SIZE];
 char lowerstring[NAME_SIZE];
 char candidates[NAME_SIZE * 3];
 char noncandidates[NAME_SIZE *6];
 char concept[NAME_SIZE];
 int p=0; //argument of SelectConcept
 int i=0;
 int listsize=7;//number of candidates produced is listsize-1

 strcpy(high, ""); strcpy(candidates, ""); strcpy(lowerstring, ""); strcpy(noncandidates, "");

 if (boundary<=1) return;

/* Else, go get the concept unless the combination tag+concept found before */
 do {
 SelectConcept(array, i++, concept, &p); //highest value = concept
 }
 while (IsCombination(concept, tagName, combfile) && (i<listsize));

/* Next, get first candidate and add to string */
 do {
 SelectConcept(array, i++, high, &p); //get candidate no 1
 }
 while (0 == strcmp(high,"") && i<listsize);
 if (p<=0)
 return FALSE;//don't print if value is less than zero
 strcat(candidates, high);

/* Get other candidates with high scores */
 while(i<listsize && boundary > 0){
 SelectConcept(array, i++, high, &p); //pick next candidate
 if (0 == strcmp(high,""))
 continue;//don't consider empty elements
 strcat(candidates, ", ");
 strcat(candidates, high);
 }//find additional candidates

/* Write information to files */
 fp = fopen(fprolog, "a+");
 fprintf(fp, "knowledge_source(%s, %s, \"%s\", [%s], \"%s\").\n",
 concept, tagName, location, candidates, thisfilename);
 fclose(fp);

 fp = fopen(tempfile, "w");//conceptfile is used later
 fputs(concept, fp); fputs("\n\n", fp); //very impt with two \n due to stringlist requirement
 fclose(fp);
 return TRUE;
}//ReportPrologFile

111

/**
 * Name: Main
 * Purpose: Walk through the domain and get concepts, candidates and write
 * information to files
 * Plan:
 * 1. Initialise
 * a: Prepare files to be used
 * b: Read the weights of the rules (extend to "from file")
 * c: Get all links
 * 2. For each document, do (according to the Heuristics for finding concepts)
 * H2: Get term frequency (uses stemming)
 * H1: Check membership in DSL (implemented as opposite of a stoplist)
 * H3: Identify emphasizers
 * H4: Check for meta information and title
 * H5a:Top level headings are important
 * H5b:Remove href candidates from consideration
 * H6: Check whether this document is linked to
 * H7: If the same concept and type occur for two elements, then choose another concept
 * (H9:Decide level of abstraction / analyse headings used - not implemented
 * Write concept with highest value and ID to prolog file
 * 3. For each element within a document, do (if level of abstraction allows it to)
 * H1: Check membership in DSL (anti-stoplist)
 * H2: Get term frequency (may introduce stemming here)
 * H3: Identify emphasizers
 * H8: Remove occurences of the document concept selected
 * (H10:Lists, tables and images (concept in image is "alt" or filename) - not implemented
 * Write information on concepts, ID, tag and upper candidate list to prolog file
 * Write additional information to report file
 * Repeat loop
 *
 * Notes: Heuristic H7 is implemented as a rule inside function ReportPrologFile
**/

int main(void) {

/* declaring filepointers */
 FILE *prologfile, *domaindocs, *tempfp, *docfile;

/* declaring variables to hold filenames */
 char current[NAME_SIZE]; //the name of the current document
 char f1[NAME_SIZE], f2[NAME_SIZE], f3[NAME_SIZE], f4[NAME_SIZE],
 f5[NAME_SIZE], f6[NAME_SIZE], f7[NAME_SIZE]; //temporary results
 char dsl[NAME_SIZE]; //domain specific list
 char cf[NAME_SIZE]; //file with concepts selected
 char freport[NAME_SIZE]; //reporting all info found
 char ft[NAME_SIZE]; //temporary file of no use at all
 char fprolog[NAME_SIZE]; //holds concepts found in prolog format
 char fprolog_non[NAME_SIZE]; //holds lowerList candidates in prolog format
 char fprologdomain[NAME_SIZE]; //holds all filenames of the domain in prolog format
 char fdomain[NAME_SIZE]; //all filenames in the domain
 char fweight[NAME_SIZE]; //weights associated with the rules
 char fdomainhrefs[NAME_SIZE]; //all hyper references in a domain
 char fprologhrefs[NAME_SIZE]; //all href information in prolog format
 char combinations[NAME_SIZE]; //for the combination concept+tag
 char newfilename[NAME_SIZE]; //new filename that element is written to

/* declaring variables to hold strings */
 char elementid[NAME_SIZE]; //ID for an element
 char tagName[TAG_SIZE];
 char document[LINE_SIZE], element[LINE_SIZE]; //document and element in long lines

/* declaring variables to hold integers */
 int doc_used, elm_used, id_nr; //global counters used in many routines
 int H1, H3, H4, H5a, H5b, H6, H8;//points associated with Heuristical rules
 int cvalue=0; //not used, but necessary as argument of SelectConcept

/* declaring other structures */
 CVR doc_conceptvalues[MAX_CANDIDATES]; //an array of records for concepts and values
 CVR elm_conceptvalues[MAX_CANDIDATES]; //the element array for concepts and values
 CVR *cand_pt, *elm_cand_pt;

/* Part 1: Initialising */
 cand_pt = &doc_conceptvalues[0]; //now cand_pt points to the first array-element
 elm_cand_pt = &elm_conceptvalues[0]; //same for the element pointer
 doc_used = elm_used = id_nr = 0; //number of elements in array and elementcounter

/* Part 1a. Prepare files for use and init filenames */
 strcpy(dsl, "domain_specific_list.txt");
 strcpy(cf, "res/concepts_file.txt"); strcpy(ft, "res/t");
 strcpy(f1, "res/temp_bold.txt"); strcpy(f2, "res/temp_italic.txt");
 strcpy(f3, "res/temp_ahref.txt"); strcpy(f4, "res/temp_meta.txt");
 strcpy(f5, "res/temp_title.txt"); strcpy(f6, "res/temp_header.txt");
 strcpy(f7, "res/temp_linkedto.txt"); strcpy(combinations, "res/combinations.txt");
 strcpy(fdomain, "domaindocs.txt"); strcpy(fprolog, "res/prolog.pro");

112

 strcpy(fweight, "res/weights.txt"); strcpy(fdomainhrefs, "res/domainhrefs.txt");
 strcpy(fprologhrefs, "res/prologhrefs.pro"); strcpy(fprologdomain, "res/prologdomain.pro");

 tempfp = fopen(combinations, "w");
 fclose(tempfp); //init this file to empty

 prologfile = fopen(fprolog, "a+"); //open prolog file

 (void) Stemmer(dsl); //all intermediate results are stemmed, so must the DSL be

/* Part 1b. Assign weights with the different Heuristics and initialise the Prologfiles */
 H1 = 100; H3 = 10; H4 = 30; H5a = 20; H5b = -200; H6 = 200; H8 = -400;
 InitPrologfiles(fprolog, fprologhrefs, H1, H3, H4, H5a, H5b, H6, H8);

/* Part 1c. Write all links in domain to file and confirm on screen */
 AllHrefsInDomain(fdomain, fdomainhrefs, fprologhrefs);
 printf("Hyper-refs written to the file domainhrefs.txt\n------\n");

/* Part 1d. Write all filenames from the domain to prolog understandable form */
 DomainToProlog(fdomain, fprologdomain);

/* Part 2: Collect the document concepts, walk through the domain */
 domaindocs = fopen(fdomain, "r");
 while (fgets(current, NAME_SIZE, domaindocs) != NULL){

strip_slash_n(current); //must remove \n from filename.html\n
FileToStr(current, document); //read document into one single string
WriteInfoToFiles(document, f1, f2, f3, f4, f5, f6);

InitArray(document, doc_conceptvalues, MAX_CANDIDATES, &doc_used); // H2 - term frequency

AssignPoints(doc_conceptvalues, dsl, H1, doc_used); // H1 - DSL
AssignPoints(doc_conceptvalues, f1, H3, doc_used); // H3 - bold
AssignPoints(doc_conceptvalues, f2, H3, doc_used); // H3 - italic
AssignPoints(doc_conceptvalues, f3, H5b, doc_used); // H5b - punish links
AssignPoints(doc_conceptvalues, f4, H4, doc_used); // H4 - meta
AssignPoints(doc_conceptvalues, f5, H4, doc_used); // H4 - title
AssignPoints(doc_conceptvalues, f6, H5a, doc_used); // H5a - Headings level 1
LinkedTo(current, f7, fdomainhrefs); // is this linked to?
AssignPoints(doc_conceptvalues, f7, H6, doc_used); // H6 - linked to

BubbleSort(doc_conceptvalues, doc_used);//conceptvalues == &conceptvalues[0]
 sprintf(freport, "res/report_%s.txt", current); // "report_file1.html"

ReportDocCandidates(doc_conceptvalues, freport, current, doc_used);
(void) ReportPrologFile(fprolog, fprolog_non, "html", current,

 doc_conceptvalues, doc_used, cf, combinations, current);

/* Part 3: Walk through each section, search for element concepts, still in outer loop */
docfile = fopen(current, "r");
id_nr = 0;

 //start an inner loop
while (GetNextElement(docfile, element, tagName) > 0) { //tag found
 InitArray(element, elm_conceptvalues, MAX_CANDIDATES, &elm_used); // H2 - term frequency
 WriteInfoToFiles(element, f1, f2, f3, f4, f5, f6); // not all info will be used...
 AssignPoints(elm_conceptvalues, dsl, H1, elm_used);//H1 - DSL
 AssignPoints(elm_conceptvalues, f1, H3, elm_used); //H3 - bold
 AssignPoints(elm_conceptvalues, f2, H3, elm_used);//H3 - italic
 AssignPoints(elm_conceptvalues, cf, H8, elm_used);//H8 - remove doc_concept

 BubbleSort(elm_conceptvalues, elm_used);
 Id(current, &id_nr, elementid);
 ReportElmCandidates(elm_conceptvalues, freport, elementid, tagName, elm_used);
 if (ReportPrologFile(fprolog, fprolog_non, tagName, elementid,

 elm_conceptvalues, elm_used, ft, combinations, current)) {
 strcpy(newfilename, "");
 sprintf(newfilename, "kwbase/%s", elementid); //make string "kwbase/elementid"
 tempfp = fopen(newfilename, "w");
 fputs(element, tempfp);
 fclose(tempfp);
 }//if, store in knowledge base

}//end inner while for the elements
fclose(docfile);

printf("The result is written to file %s\n", freport);
 } //while get domaindocs

 fclose(domaindocs); //close files
 fclose(prologfile);

}//end of main program.

113

/******************************* parseradt.h *********************************

 Purpose: ADT for extracting elements and information from an HTML-document

***/

/**************************** Public Constants ****************************/
#include "constants.h" //has all public constants
#include "ruleadt.h"

/**************************** Public Routines *****************************/
externint AllImages(char input[], char output[], int *counter);
extern int AntiStoplist(char inputfile[], char output[], char antiFilename[], int *counter);
extern void FileToStr(char filename[NAME_SIZE], char output[]);
extern int GetFirstTag(char input[], char output[], char tag[]);
extern int GetNextElement(FILE *docfile, char output[], char tag[]);
extern int Id(char docname[ID_SIZE], int *counter, char tagid[NAME_SIZE]);
extern int LexicalAnalysis(char input[], char output[], char FileOut[NAME_SIZE], int *counter);
extern int SubElementTerms(char tag[TAG_SIZE], char input[], char output[], char tempfile[NAME_SIZE],
int *size);
extern int TagsFromFile(char filename[], char tag[TAG_SIZE], char pro[LINE_SIZE], char
ut2[LINE_SIZE]);
extern int TagsFromString(char tag[TAG_SIZE], char input[], char output[]);
extern int WordCount(char filename[], int *size);
extern int Stemmer(char filename[NAME_SIZE]);

/******************************* ruleadt.h *********************************/

/**************************** Public Constants ****************************/
#include "constants.h" //has all public constants
#include "strlist.h"

/****************************** Public Types ******************************/

struct _HeuristicRecord {
char heuristicId[HEUR_SIZE];/* Heuristic identifier */
int points;/* Points associated with the Heuristic */

 } ;
typedef struct _HeuristicRecord HR;

struct _ConceptValueRecord {
char candidate[NAME_SIZE];
int value;
};

typedef struct _ConceptValueRecord CVR;

struct _ElementRecord {
char id[ID_SIZE];/* ID for which this tag is retagged */
char tagName[TAG_SIZE];/* the name of the element */
char conceptName[NAME_SIZE];/* the concept name of the element */
char content[LINE_SIZE];/* the original content of the element */
char href[LINE_SIZE]; /* does this element contain a href? */
char tempfile[NAME_SIZE];/* reference to a temporary file with words */
int stopcount;/* number of remaining words after lexical analysis */
char stopwords[LINE_SIZE];/* all the remaining words after lexical analysis */
int subcount;/* number of words in identified sub-element */
char subwords[LINE_SIZE];/* words in sub-element */
int anticount; /* number of words after anti-stoplist */
char antiwords[LINE_SIZE];/* words after anti-stoplist */
char maxwords[LINE_SIZE];/* words with more than two occurrences */
int maxcount;/* number of maximum occurrences of a word in the string */

 } ;
typedef struct _ElementRecord ER;

/**************************** Public Routines *****************************/
extern int OlderParser(char docname[NAME_SIZE]);
extern void AllHrefsInDomain(char domainfilename[NAME_SIZE],
 char linkfile[NAME_SIZE], char prologfilename[NAME_SIZE]);
extern void strip_slash_n(char temp[]);
extern void InitArray(char current[NAME_SIZE], CVR *conceptvalues, int arraysize, int *used);
extern int MaxWords(char tempfile[], char output[], int *maximum ,
 CVR *termfrequency, int *used);
extern void AssignPoints(CVR *candidatevalues, char incomingfile[], int points, int boundary);
extern void BubbleSort(CVR record[], int max);
extern void WriteInfoToFiles(char element[LINE_SIZE], char file1[NAME_SIZE],
 char file2[NAME_SIZE], char file3[NAME_SIZE],
 char file4[NAME_SIZE], char file5[NAME_SIZE],
 char file6[NAME_SIZE]);
extern void SelectConcept(CVR *doc_conceptvalues, int location, char concept[], int *pt);
extern void LinkedTo(char current[NAME_SIZE], char fout[NAME_SIZE], char hrefs[NAME_SIZE]);
extern void DomainToProlog(char domainfile[NAME_SIZE], char output[NAME_SIZE]);

114

/******************************** stop.h *********************************
 Purpose: Stop list DFA generator and driver module header.
 Notes: This module implements a fast finite state machine generator,
 and a driver, for implementing stop list filters.
***/

#ifndef STOP_H
#define STOP_H

#include "strlist.h" /* this code relies on the StrList package */

/****************************** Public Types ******************************/

typedef struct _DfaStruct *DFA; /* Deterministic Finite Automaton object */

/**************************** Public Routines *****************************/

#ifdef __STDC__

extern DFA BuildDFA(StrList words);
extern char *GetTerm(FILE *stream, DFA machine, int size, char *output);

#else

extern DFA BuildDFA();
extern char *GetTerm();

#endif
#endif

/******************************* strlist.h *********************************

 Purpose: Simple string list abstract data type module header

 Notes: This module implements a straightforward string ordered list
 abstract data type. It is optimized for appending and deleting
 from the end of the list. Since they are ordered lists, string
 lists may be sorted, and their members are addressed by ordinal
 position (starting from 0).
***/

#ifndef STRLIST_H
#define STRLIST_H

/**************************** Public Constants ****************************/

#define NULL_INDEX -1 /* invalid string index */

/****************************** Public Types ******************************/

typedef struct _StrListStruct *StrList; /* the base string list type */

/**************************** Public Routines *****************************/

#ifdef __STDC__

extern void StrListAppend(StrList list, char *string);
extern void StrListAppendFile(StrList list, char *filename);
extern StrList StrListCreate(void);
extern void StrListDestroy(StrList list);
extern int StrListEqual(StrList list1, StrList list2);
extern int StrListElementEqual(int pos, StrList list1, StrList list2);
extern int StrListCount(int pos, StrList list1, StrList list2);
extern char * StrListPeek(StrList list, int index);
extern int StrListSize(StrList list);
extern void StrListSort(StrList list);
extern void StrListUnique(StrList list);
extern int StrListMember(char term[], StrList list);

#else

extern void StrListAppend(/* list, string */);
extern void StrListAppendFile(/* list, filename */);
extern StrList StrListCreate(/* void */);
extern void StrListDestroy(/* list */);
extern int StrListEqual(/* list1, list2 */);
extern int StrListElementEqual(/* pos list1, list2 */);
extern int StrListCount(/*pos, list1, list2 */);
extern char * StrListPeek(/* list, index */);
extern int StrListSize(/* list */);
extern void StrListSort(/* list */);
extern void StrListUnique(/* list */);
extern int StrListMember(/* char term[], StrList list*/);

#endif
#endif

115

/******************************* stem.h ***********************************

 Purpose: Header file for an implementation of the Porter stemming
 algorithm.

 Notes: This module implemnts a fast stemming function whose results
 are about as good as any other.
**/

#ifndef STEM_H
#define STEM_H

/**/
/**************************** Public Routines *****************************/

#ifdef __STDC__

extern int Stem(char *word); /* returns 1 on success, 0 otherwise */

#else

extern int Stem();

#endif

#endif

/******************************* constants.h *********************************/

/**************************** Public Constants ****************************/
#define HEUR_SIZE 5
#define EOS '\0'
#define FALSE 0
#define TRUE 1
#define LINE_SIZE 50000// how many characters can an element hold
#define TAG_SIZE 20// how many characters in a tag-name
#define NAME_SIZE 50// number of characters in a file / concept name
#define DOC_SIZE 100000// size of a document
#define MAX_CANDIDATES 1000// maximum number of candidate concepts
#define ID_SIZENAME_SIZE+7// size of ID
#define TEMP_FILE_NAME "temp_output.txt"

116

/********************************* ruleadt.c ********************************/

#include <stdio.h>
#include <string.h>

#include "ruleadt.h"
#include "constants.h"

void strip_slash_n(char temp[]){
 int i = strlen(temp); //locate end of string
 temp[i-1] = EOS;//replace \n with \0
} //strip slash n

/**
 * Name: AllHrefsInDomain
 * Purpose: searches all files in a domain and gets all the links
 * The result is written to two files: one in prolog-format (prolog)
 * and one for temporar use throughout the parsing (linkfile).
 * Calls: TagsFromFile() from parseradt.c
 * Plan:
 * 1. Get next filename from domain-file
 * 2. Parse current file for hrefs
 * 3. Write result to file
**/

void AllHrefsInDomain(char domainfilename[NAME_SIZE], char linkfile[NAME_SIZE], char
prologfilename[NAME_SIZE]){
 char tagsearch[TAG_SIZE];
 char result[LINE_SIZE];
 char resultpro[LINE_SIZE];
 FILE *outputfile, *domainfile, *prologfile;
 char current[NAME_SIZE];

 domainfile = fopen(domainfilename, "r"); //prepare to parse domain
 outputfile = fopen(linkfile, "w"); //make sure it is empty
 fclose(outputfile);
 while (fgets(current, 50, domainfile) != NULL){

strip_slash_n(current); //must remove \n from the string filename.html\n

strcpy(result, "");strcpy(resultpro, "");
strcpy(tagsearch, "A");

outputfile = fopen(linkfile, "a+");prologfile = fopen(prologfilename, "a+");

(void) TagsFromFile(current, tagsearch, resultpro, result);
if (result) {
fprintf(outputfile, "%s", result);fprintf(prologfile, "%s", resultpro);
}
fclose(outputfile);fclose(prologfile);

 }//while domain is parsed
 fclose(domainfile);
}//AllHrefsInDomain

/**
 * Name: BubbleSort
 * Purpose: Sorts an array of records based on the value-field
 * into ascending order
 * Notes: Ascending order, that is 1-2-3-...-n
**/

void BubbleSort(CVR record[], int max){
int x, y;
CVR temp;//temporary record
// bubble sort the array

 for (x=0; x < max-1; x++)
 for (y=0; y < max-x-1; y++)
 if (record[y+1].value > record[y].value){ //y, y+1 for ascending
 temp = record[y];
 record[y] = record[y+1];
 record[y+1] = temp;
 }//if
}//BubbleSort

/**
 * Name: DomainToProlog
 * Purpose: Writes all filenames of a domain to an output file in
 * prolog-format.
 * Notes: Receives the name of a file with one filename on each line.
**/

void DomainToProlog(char domainfile[NAME_SIZE], char output[NAME_SIZE]){
 FILE *fp;

117

 char tempstring[LINE_SIZE], current[NAME_SIZE];

 strcpy(tempstring, ""); strcpy(current, "");
 strcat(tempstring, "domain([");

 fp = fopen(domainfile, "r");
 while (fgets(current, NAME_SIZE, fp) != NULL){
 strip_slash_n(current); //must remove \n from filename.html\n
 strcat(tempstring, "\"");
 strcat(tempstring, current);
 strcat(tempstring, "\", ");
 } //while
 strcat(tempstring, "]).");
 fclose(fp);
 fp = fopen(output, "w");
 fprintf(fp, tempstring);
 fclose(fp);
}//DomainToProlog

/**
 * Name: InitArray
 * Purpose: Builds a list of all candidate concepts based on the input
 * string and assigns values according to term frequencies
 * Calls: LexicalAnalysis from parseradt.c and MaxWords
 * Plan:
 * 1. Init array with <candidate, value> tuples set to zero
 * 2. Run lexical analysis
 * 3. Stem the terms
 * 4. Count number of words. Put each <term, frequency> tuple in array
 * 5. Return information found
**/

void InitArray(char input[LINE_SIZE], CVR *conceptvalues, int arraysize, int *used){
 char stopwords[LINE_SIZE], maxstring[LINE_SIZE];
 CVR *temp;
 int p=0, i=0;
 int count=0;
 strcpy(stopwords, ""); strcpy(maxstring, "");
 *used = 0; //how many fields in array is used

 temp = conceptvalues;
 for (i=0; i<arraysize; i++){
 strcpy(temp->candidate, ""); //blank'em all
 temp->value = 0;
 temp++;
 }
 (void) LexicalAnalysis(input, stopwords, "res/temp_lexical.txt", &p); // 2
 (void) Stemmer("res/temp_lexical.txt"); // 3
 (void) MaxWords("res/temp_lexical.txt", maxstring, &count, conceptvalues, used); // 4
}//InitArray

/**
 * Name: MaxWords
 * Purpose: Identifies all terms in tempfile[] with more than two occurrences
 * and writes them to the string output[], and overwrites tempfile
 * with a list of unique words.
 * Modified: New modified version also includes:
 * Writes tuples <term, frequency> to array and returns how much
 * of the array is used.
 * Returns: Maximum number of words
 * Note: Incoming file should have one word on each line, for instance
 * by having been exposed to lexical analysis first.
 * Plan:
 * 1. Make a string list based on the input file
 * 2. Count the number of each word and save result
 * 3. Build array of all candidates with tuples <term, frequency>
 * 4. Return the largest number
**/

int MaxWords(char tempfile[], char output[], int *maximum , CVR *termfrequency, int *used) {
 char *term; // for the next term from the input line
 StrList words, taltOpp; // string lists of all the words on a file
 int size, antall, i;// counters

/* Part 1: Create a list of words from a file */
 words = StrListCreate();
 StrListAppendFile(words, tempfile); // tempfile opened/closed inside function
 size = StrListSize(words);

/* Part 2: Count the number of words and save output */
 taltOpp = StrListCreate();//for the words already counted
 antall = 0;
 *maximum = 0;
 for (i=0; i<size; i++) { //list traversal
 term = StrListPeek(words, i);

if (!StrListElementEqual(i, words, taltOpp)) { //word not counted yet

118

antall = StrListCount(i, words, words); //function to count frequency of current word
StrListAppend(taltOpp, term); //marks current word as counted

 if (antall > 1) { //save the information:
sprintf(output, "%s%s - %d ", output, term, antall); //concatenate through the first %s
}

 if (antall > (*maximum)) {
 *maximum = antall;
 }

 /* Part 3: Array of <term, frequency> */
 strcpy((termfrequency->candidate), term);
 (termfrequency->value) = antall;
 termfrequency++;
 (*used)++;// update number of terms inserted into the array
 } //if count
 }//for
 /* Part 4: Return maximum */
 return *maximum;
}

/**
 * Name: AssignPoints
 * Purpose: Assigns "points" to those candidates from "candidatevalues"-array
 * found in "incomingfile". "boundary" is used for efficient traversal
 * and holds the number of elements in the array with candidates.
 * Note: Incoming file should have one word on each line in order to convert
 * correctly to stringlist. This method is rather brilliant.
 * IR-functions all write their results to temporary files, and these have
 * terms that must be subsets of all words surviving lexical analysis.
 * Therefore the membership test makes sense: If one of the candidates have
 * membership in the incoming file, it should be given extra points
 * Plan:
 * 1. Make stringlist of incoming file
 * 2. Check every candidate concept for membership in the list
 * 3. Update values in array and save pointer to first array-element
**/

void AssignPoints(CVR *candidatevalues, char incomingfile[], int points, int boundary){

 CVR *temp;
 char term[NAME_SIZE]; // for the next term from the input line
 StrList list; // string list of all the words from an anti-stoplist file
 int i=0;

 /* 1 */
 list = StrListCreate();
 StrListAppendFile(list, incomingfile); // file is opened inside function
 if (StrListSize(list) <= 1)
 ; // do nothing
 else {
 /* 2 */
 temp = candidatevalues;
 while (i++<boundary){ // boundary has the size of the array
 strcpy(term, temp->candidate);

 if (StrListMember(term, list))
temp->value += points;// 3
 temp++;

 }//searching for membership
 }//else
}//AssignPoints

/**
 * Name: IsCombination
 * Purpose: Checks for the combination "concept-tagName"
**/

int IsCombination(char concept[NAME_SIZE], char tagName[TAG_SIZE], char file[NAME_SIZE]){
 FILE *fp;
 StrList list;
 char comb[TAG_SIZE+NAME_SIZE];

 strcpy(comb, ""); sprintf(comb, "%s_%s", concept, tagName);

 list = StrListCreate();
 StrListAppendFile(list, file); // file is opened inside function
 if (StrListMember(comb, list))

return TRUE;
 else { //did not find a combination
 fp = fopen(file, "a+");
 fputs(comb, fp); //update file
 fputs("\n", fp);
 fclose(fp);
 return FALSE;
 }//else
} //IsCombination

119

/**
 * Name: WriteInfoToFiles
 * Purpose: Collects information about an incoming element:
 * . emphasizer elements like , <I> etc
 * . links
 * . meta and title
 * The result is placed in files
 * Note: Result from sub-element is written to a file, one term for each line
 * Plan:
 * 1. Get terms from sub-element specified. Returns stemmed terms.
 * 2. Output is not used, but result is written to file
**/

void WriteInfoToFiles(char element[LINE_SIZE], char file1[NAME_SIZE],
 char file2[NAME_SIZE], char file3[NAME_SIZE],
 char file4[NAME_SIZE], char file5[NAME_SIZE],
 char file6[NAME_SIZE]){
 char output[LINE_SIZE];
 int p=0;
 strcpy(output, "");

/* Part 1: Write information to files */
 (void) SubElementTerms("B", element, output, file1, &p); // get all bold tags
 (void) SubElementTerms("I", element, output, file2, &p); // italic tags from the element
 (void) SubElementTerms("A", element, output, file3, &p); // a-href tags from the element
 (void) SubElementTerms("META", element, output, file4, &p);// meta tags
 (void) SubElementTerms("H1", element, output, file6, &p);// heading1
}//WriteInfoToFiles

/**
 * Name: LinkedTo
 * Purpose: Identifies all href-elements from the file hrefs that contains
 * the string current. All such occurrences are documents that refers to
 * the current one, and hence the terms are candidate concepts. The result
 * is placed in file with name fout
 * Note: Result from L.A. is written to a file fout, one term for each line
 * Plan:
 * 1. Read line by line from hrefs
 * 2. Add up all lines that contains the string "current"
 * 3. Send these lines to Lexical Analysis
 * 4. Stem result
**/

void LinkedTo(char current[NAME_SIZE], char fout[NAME_SIZE], char hrefs[NAME_SIZE]){
 FILE *fp;
 char line[LINE_SIZE], temp[LINE_SIZE], notused[LINE_SIZE];
 int p=0; //not used

 strcpy(line, ""); strcpy(temp, ""); strcpy(notused, "");
 fp = fopen(hrefs, "r");
 while (fgets(line, LINE_SIZE, fp) != NULL) {// 1.
 if (strstr(line, current)) // 2.
 strcat(temp, line);
 }//while
 fclose(fp);
 LexicalAnalysis(temp, notused, fout, &p); // 3.
 (void) Stemmer(fout); // 4

}//LinkedTo

/**
 * Name: SelectConcept
 * Purpose: Selects the concept with the highest score
 * Plan:
 * 1. Pick concept with highest value
**/

void SelectConcept(CVR *doc_conceptvalues, int location, char concept[], int *pt){

 //don't pick out if the field has an empty name
 if (0 == strcmp(doc_conceptvalues[location].candidate, ""))
 location++;

 strcpy(concept, doc_conceptvalues[location].candidate);
 (*pt) = doc_conceptvalues[location].value;
}//SelectConcept

120

/********************************* parseradt.c ********************************
Written by: Svend Andreas Horgen
Date: May 2002

 Purpose: Functions to assist the parsing of an HTML-document
 Notes: Does assume that the last text in a line is an end-tag
**/

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "parseradt.h"
#include "constants.h"
#include "strlist.h"
#include "stop.h"
#include "stem.h"

/************************* Private Function Declarations ********************/

/* Function to make sure every record field is correctly initialized */
int InitRecord(ER *pt){

/* string fields are initialized */
 strcpy(pt->id, ""); strcpy(pt->tagName, "");
 strcpy(pt->conceptName, ""); strcpy(pt->content, "");
 strcpy(pt->tempfile, TEMP_FILE_NAME); strcpy(pt->href, "");
 strcpy(pt->stopwords, ""); strcpy(pt->subwords, "");
 strcpy(pt->antiwords, "");strcpy(pt->maxwords, "");

/* integer-fields are set to 0 */
 pt->stopcount = pt->subcount = pt->anticount = pt->maxcount = 0;
 return TRUE;
} //InitRecord

/* Function to produce the string </TAG> */
char *MakeEndTag(char tagName[]){
 char endtag[TAG_SIZE];
 sprintf(endtag, "</%s>", tagName);
 return endtag;
}//EndTag

/* Function to produce the string "<TAG>" */
char *MakeStartTag(char tagName[]){
 char starttag[TAG_SIZE];
 sprintf(starttag, "<%s>", tagName);
 return starttag;
}//StartTag

/* Function to produce the string "<TAG " (accounts for <TAG STYLE="blabla">) */
char *MakeStartTagOpen(char tagName[]){
 char starttag[TAG_SIZE];
 sprintf(starttag, "<%s ", tagName);
 return starttag;
}//StartTag

/* Function to convert a string to lower case */
char *StrToLower(char temp[]){
 int c;
 int i=0;

 while((c=temp[i]) != '\0') {
 if (isupper(c))
 temp[i] = tolower(c);
 i++;
 }
 return temp;
}//StrToLower

/* Function to grab the next token from an input stream */
static char *GetNextTerm(FILE *stream, int size, char *term) {
 char *ptr; /* for scanning through the term buffer */
 int ch; /* current character during input scan */

 /* Part 1: Return NULL immediately if there is no input */
 if (EOF == (ch = getc(stream))) return(NULL);

 /* Part 2: Initialize the local variables */
 *term = EOS;
 ptr = term;

 /* Part 3: Main Loop: Put the next word into the term buffer */
 do {
 /* scan past any leading non-alphabetic characters */
 while ((EOF != ch) && !isalpha(ch)) ch = getc(stream);

 /* copy input to output while reading alphabetic characters */
 while ((EOF != ch) && isalpha(ch)){
 if (ptr == (term+size-1)) ptr = term;
 *ptr++ = ch;
 ch = getc(stream);

121

 }

 /* terminate the output buffer */
 *ptr = EOS;
 }
 while ((EOF != ch) && !*term);

 /* Part 4: Return the output buffer */
 return(term);
} /* GetNextTerm */

/************************* Public Function Declarations *********************/

/**
 * Name: AllImages
 * Purpose: Puts all image-tags from the input-string to output[]
 * Returns: Number of images found
 * Note: To find all images in a document, simply convert the entire
 * document to a single string first, using FileToStr()
 * Then call AllImages with this string.
 * Plan:
 * 1. Initializing
 * 2. Identify all image-elements
 * 3. Return
***/

int AllImages(char input[], char output[], int *counter){

 char starttag[TAG_SIZE];
 char tempin[LINE_SIZE], tempout[LINE_SIZE];
 char *ptr, *start, *end;
 int j=0;

/* Part 1: Initializing */
 strcpy(tempout, "");
 strcpy(tempin, input);
 (void) StrToLower(tempin);
 strcpy(starttag, MakeStartTagOpen("img")); //

 /* Part 2: Search for all sub-elements */
 ptr = tempin;
 while (start = strstr(ptr, starttag)) {
 end = strstr(start, ">");//find matching ">"

 if (!end) //no endtag found
 break;
/* Part 3: Catch the contents */

 end++; //to move pointer behind ">"
 while (start != end)
 tempout[j++] = *start++ ; //shorthand notation that saves two more lines
 ptr = end;

 (*counter)++; //else
 }//while

/* Part 4: Update output string and return indication of success */
 tempout[j] = EOS; //if nothing found, then output string is empty since j=0
 strcpy(output, tempout);
 return *counter;
}//AllImages

/**
 * Name: AntiStoplist
 * Note: This is the implementation of the DSL, domain specific list,
 * which originally was called AntiStopList.
 * The anti-stoplist itself must have just one \n after the last word.
 * Purpose: Runs a file against an anti-stoplist given by antiFilename
 * (An anti-stoplist contains domain specific keywords)
 * Inputfile[] is a file that has gone through lexical
 * analysis with one word for each line.
 * Saves the words that occur both in the file and
 * in the anti-stoplist to the string output[].
 * Returns: Number of words found in anti-stoplist.
 * Plan:
 * 1. Create string lists of the words from the anti-stoplist and inputfile
 * 2. Traverse the input-list and comparing with the anti-list
 * 3. Collect words found into the string pointed to by output[]
 * 4. Returning number of words
**/

int AntiStoplist(char inputfile[], char output[], char antiFilename[], int *counter){
 char term[50]; /* for the next term from the input line */
 StrList words, anti; /* string lists of all the words on a file */
 /* and all the the words from an anti-stoplist file */
 int size, i;/* the number of words from the file and the anti-stoplist */

 /* Part 1: Create a list of words read from a file */

122

 words = StrListCreate();
 anti = StrListCreate();
 StrListAppendFile(words, inputfile); // file is opened in function, one word per line
 StrListAppendFile(anti, antiFilename); // correct anti-list file opened in function
 StrListUnique(words); //removing duplicates

 /* Part 2: Traverse the list while comparing with the anti-list */
 *counter = 0;
 size = StrListSize(words);
 for(i=0; i<size; i++) {

 strcpy(term, StrListPeek(words, i));

 /* Part 3: Collect words found */
 if (StrListElementEqual(i, words, anti)) {
 //the term in position i in words is found in anti

strcat(term, ", ");
strcat(output, term);
(*counter)++;

 } //if
 } //for

 /* Part 4: Returning number of words */
 return *counter;
} //AntiStoplist

/**
 * Name: FileToStr
 * Purpose: Writes an entire file to a single string
 * Plan:
 * 1. Open file and initialize output string
 * 2. Read line by line while adding to the string
 * 3. Close file. String is accessible through pointer
**/

void FileToStr(char filename[NAME_SIZE], char output[]){
 FILE *docfile;
 char line[LINE_SIZE];

/* Part 1: Open file and initialize output string */
 strcpy(output, "");
 docfile = fopen(filename, "r");

/* Part 2: Read line by line while adding to the string */
 while (fgets(line, LINE_SIZE, docfile) != NULL)
 strcat(output, line);

/* Part 3: Close file. String is accessible through pointer */
 (void) fclose(docfile);
}//FileToStr

/**
 * Name: GetFirstTag
 * Purspose: Searches for the first occurrence of a tag in the input string
 * given, and places the result in output[]
 * Returns: indication of success, TRUE if a tag was found
 * Plan:
 * 1. Initializing + avoid tag-errors
 * 2. Search for element
 * 3. Catch the contents of this tag
 * 4. Updating output-string and return
**/

int GetFirstTag(char input[], char output[], char tag[]){
 char *start, *end;
 int size, j, a;
 char temp[LINE_SIZE], temp2[LINE_SIZE]; //in order not to overwrite the contents...
 char starttag[TAG_SIZE], starttagopen[TAG_SIZE], endtag[TAG_SIZE];
 //need space for tags like </blockquote> etc

/* Part 1: Initializing and dealing with possible tag-errors */
 (void) StrToLower(tag);
 strcpy(starttag, MakeStartTag(tag));
 strcpy(endtag, MakeEndTag(tag));
 strcpy(starttagopen, MakeStartTagOpen(tag));
 //to avoid
, , <B Style="blabla"> error
 size = j = 0; strcpy(temp, "");
 strcpy(temp2, input);

 /* Part 2: Search for element */
 (void) StrToLower(temp2);
 if ((start = strstr(temp2, starttag)) || (start = strstr(temp2, starttagopen))) {
 end = strstr(temp2, endtag);
 if (!end) //no endtag found
 return FALSE;

 for (a=0; a<strlen(endtag); a++) end++;

123

/* Part 3: Catch the contents of this tag */
 while (start != end)
 temp[j++] = *start++ ; //shorthand notation that saves two more lines

 temp[j] = EOS; //first copy sub-element, then place a '\0' to mark end of string

 /* Part 4: Updating output-string and indicate success */
 strcpy(output, temp);
 return TRUE;

 }//if
 return FALSE; //if no tag found...
}//GetFirstTag

/**
 * Name: GetNextElement
 * Purpose: Collects the text and tagname from the next element from a file stream.
 * Returns: Indication of success.
 * Note: This function does case-insensitive tag-checking,
 * so ul, Ul, uL and UL are all treated equally.
 * Plan:
 * 1. Initializing
 * 2. Collect the text from the element found
 * 3. Return the text of the element
***/

int GetNextElement(FILE *docfile, char output[], char tag[]) {

 char line[LINE_SIZE], ut[LINE_SIZE]; //can hold LINE_SIZE characters
 int funnet=FALSE;
 char endtag[TAG_SIZE];
 char temp[LINE_SIZE]; //helping to make tags lowercase

 /* Part 1. Initializing the temporary variables */
 strcpy(ut, ""); strcpy(line, "");

 /* Part 2. Read line by line until end of document or a tag is found */
 while (fgets(line, LINE_SIZE, docfile) != NULL) {

strcpy(temp, line);
(void) StrToLower(temp);

 if (strstr(temp, "<h1")) { // accounts for tags with attributes
 funnet = TRUE; // since the > is missing in the test
 strcpy(tag, "h1"); }
 else if (strstr(temp, "<h2")) {
 funnet = TRUE;
 strcpy(tag, "h2"); }
 else if (strstr(temp, "<h3")) {
 funnet = TRUE;
 strcpy(tag, "h3"); }
 else if (strstr(temp, "<table")) {
 funnet = TRUE;
 strcpy(tag, "table"); }
 else if (strstr(temp, "<ul")) {
 funnet = TRUE;
 strcpy(tag, "ul"); }
 else if (strstr(temp, "<ol")) {
 funnet = TRUE;
 strcpy(tag, "ol"); }
 else if (strstr(temp, "<p")) {
 funnet = TRUE;
 strcpy(tag, "p");}
 else if (strstr(temp, "<blockquote")) {
 funnet = TRUE;
 strcpy(tag, "blockquote"); }///etc...

 if (funnet) break; //jump out of while-loop
 } //while

/* Part 2. Collect the text from the element found */
 if (funnet) {
 strcat(ut, line);//add the line to the content of the element (ut)
 strcpy(endtag, MakeEndTag(tag)); // making a string with "</tag>"
 while (! strstr(temp, endtag)) {

if (fgets(line, LINE_SIZE, docfile) != NULL){ //inserts an /0 by the end of line.
 strcat(ut, line); //adds line to the string ut
 strcpy(temp, line);
 (void) StrToLower(temp);
}//if
else break; //jump out of while if no more lines in file (that is no endtag found)
} //while

/* Part 3. Update and return the element found */

 strcpy(output, ut); //the text of the element
return 1; //return and exit function immediately

 }//funnet

 return 0; //happens when no tags found.
}//GetNextElement

124

/**
 * Name: Id
 * Purpose: Constructs an unique ID for a string. The ID takes the following
 * form: ID = DocumentName + "#" + "sub" + counter.
 * Example: testfile.html#sub3
 * Returns: Indication of success
 * Note: the form testfile.html#sub3 is used because then it is easy to
 * generate links in the adaptive document later.
 * Plan:
 * 1. Compose the ID
 * 2. Update the counter and return
**/

int Id(char docname[ID_SIZE], int *counter, char elementid[NAME_SIZE]) {

 strcpy(elementid, "");

/* Part 1: Compose the ID */
 sprintf(elementid, "%s#elm%d", docname, *counter);

 /* Part 2: Update the counter first, then return */
 return ++(*counter);
}//Id

/**
 * Name: Lexical Analysis
 * Purpose: Removes stopwords and performs a lexical analysis on the element
 * specified by the paramater input[]
 * Output is a pointer to a string where the result is placed.
 * The result is also written to the file FileOut
 * Returns: number of words remaining after the analysis
 * Uses: parseradt.c
 * Note: The temporary file is written over when a new element is being
 * analysed, but its filename is necessary as input for the function
 * WordCount. (char input[] is a pointer)
 * Plan:
 * 1. Work against a temporary file
 * 2. Building DFA for filtering stopwords
 * 3. Remove stopwords from input file
 * 4. Close input file and return
**/

int LexicalAnalysis(char input[], char output[], char FileOut[NAME_SIZE], int *counter) {

 FILE *stream;/* temporary file */
 FILE *outputfil;/* file to hold remaining words after lexical analysis */
 char FileIn[20];/* logical file name */
 char term[128];/* for the next term found */
 StrList words;/* the stop list filtered */
 DFA machine;/* build DFA from the stop list */

 strcpy(FileIn, "res/temp_lex.txt"); // input string is written to this file

/* Part 1. Write the content of the string input[] to tempfile */
 stream = fopen(FileIn, "w");
 fputs(input, stream);
 (void) fclose(stream);

/* Part 2. Building a DFA for filtering stopwords */
 words = StrListCreate();
 StrListAppendFile(words, "stop.wrd");
 machine = BuildDFA(words); //create a DFA

/* Part 3. Remove stopwords from input-file, and preserving information
 in both a file and the output-string */

 if (!(stream = fopen(FileIn,"r"))) exit(1); //open temporary file
 outputfil = fopen(FileOut, "w");
 while ((NULL != GetTerm(stream,machine,128,term))){
 fputs(term, outputfil);
 fputs("\n", outputfil);

 strcat(term, ", ");
 strcat(output, term);

 }

/* Part 4: Closing the files */
 (void)fclose(stream);
 (void)fclose(outputfil);

/* Part 5: Counting number of words on file and return */
 (void) WordCount(FileOut, counter); //file that is subject to word count
 return *counter;
} //LexicalAnalysis

125

/**
 * Name: Stemmer
 * Purpose: Porter stemming function. Takes a single filename and writes
 * the stemmed terms to the file result.
 * Calls: GetNextTerm
 * Uses: Stem (from stem.c)
 * Plan:
 * 1. Open the input file
 * 2. Process each word in the file
 * 3. Close the input file
**/

int Stemmer(char filename[NAME_SIZE]){
 char term[64]; /* for the next term from the input line */
 char temp[LINE_SIZE];
 FILE *stream; /* where to read characters from */
 strcpy(temp, "");

 /* Part 1: Open the input file og outputfil */
 if (!(stream = fopen(filename,"r"))) exit(1); //The file to be stemmed

 /* Part 2: Process each word in the file */
 while(GetNextTerm(stream,64,term)) {
 if (Stem(term)) {

 strcat(temp, term);
 strcat(temp, "\n");

 } //if
 } //while
 /* Part 3: Close the file */
 (void)fclose(stream);

 /* Part 4: Write stemmed result back to file */
 stream = fopen(filename, "w");
 fputs(temp, stream); /* resulting term to output */
 (void)fclose(stream);
 return(0);
} //Stemmer

/**
 * Name: SubElementTerms
 * Purpose: Locates all sub-elements specified by tag[] in the string input[].
 * If any found, they are all run through lexical analysis. The resulting
 * terms are put in the string output[] and in the file tempfile and the number
 * of elements placed in the integer size
 * Returns: Success
 * Calls: TagsFromString() and LexicalAnalysis()
 * Note: Lexical analysis writes the result to a file and the string output[].
 * Here only the output is used further
 * Plan:
 * 1. Perform lexical analysis on the sub-elements found
 * 2. Return number of survivors (0 if no remains or if no sub-elements found)
**/

int SubElementTerms(char tag[TAG_SIZE], char input[], char output[],
 char filein[NAME_SIZE], int *size){

 FILE *fp;
 char result[LINE_SIZE];
 strcpy(result, "");
 /* Part 1: Identify sub-element and run lexical analysis */
 *size = 0;
 fp = fopen(filein, "w"); fclose(fp);
 if (TagsFromString(tag, input, result)) {
 (void) LexicalAnalysis(result, output, filein, size); //filein is used further
 (void) Stemmer(filein); //stem
 }
 /* Part 2: Return success */
 return *size;
}//SubElement

126

/**
 * Name: TagsFromFile
 * Purpose: gets all elements specified by "tag" from the file and writes the result
 * to the string ut[]
 * Returns: True if some elements found
 * Plan:
 * 1. Initialize the variables
 * 2. Read file into one line
 * 3. Get the next tag searching from position ptr
 * 4. Get link target
 * 5. Format link information for PROLOG
 * 6. Return success
**/

int TagsFromFile(char filename[], char tag[TAG_SIZE],
 char pro[LINE_SIZE], char ut2[LINE_SIZE]){
 char line[LINE_SIZE], temp[LINE_SIZE], resultat[LINE_SIZE], resultat2[LINE_SIZE];
 char *start, *ptr, *a, *b;
 char c[NAME_SIZE];//to hold link target
 int i, j;

 /* Part 1: Initializing the variables */
 strcpy(pro, ""); strcpy(line, ""); strcpy(temp, ""); strcpy(resultat, ""); strcpy(c, "");
 strcpy(ut2, "");

/* Part 2: Read file into one long line */
 (void) FileToStr(filename, temp);
 (void) StrToLower(temp);

/* Part 3: Get the next tag searching from position ptr */
 ptr = temp;
 start = NULL;
 while(GetFirstTag(ptr, resultat, tag)) {

/* Part 4: Move ptr to the start of remaining string, get link */
 start = strstr(ptr, resultat);
 while (ptr != start)
 ptr++;
 for (i=0; i<strlen(resultat); i++) ++ptr;
 strcat(ut2, resultat); strcat(ut2, "\n"); //get link

 /* Part 5: Formatting in PROLOG format */

strcpy(c, "");j = 0;
a = strchr(resultat, '\"'); a++; b = strchr(a, '\"');
while (a != b)
 c[j++] = *a++ ; //shorthand notation that saves two more lines
c[j] = EOS; //after sub-element is copied, then place a '\0' to mark end of string

 sprintf(resultat2, "*href(\"%s\", \"%s\", %s).\n", filename, c, resultat);
 strcat(pro, resultat2);
 }//while

 /* Part 6: Return success */
 if (start) //an element was found
 return TRUE;
 else
 return FALSE;
} //TagsFromFile

/**
 * Name: TagsFromString
 * Purpose: Searches for all tags requested for in the input string given, and places
 * the result in the string output[]
 * Returns: indication of success, TRUE if at least one tag was found
 * Plan:
 * 1. Initializing + avoid tag-errors
 * 2. Search for all tags
 * 3. Add the contents to the output string
 * 4. Updating output-string and return
**/

int TagsFromString(char tag[TAG_SIZE], char input[], char output[]){
 char *start, *end, *ptr;
 int size, j, a, success;
 char temp[LINE_SIZE], temp2[LINE_SIZE];
 char starttag[TAG_SIZE], starttagopen[TAG_SIZE], endtag[TAG_SIZE];
 //need space for tags like </blockquote> etc

/* Part 1: Initializing */
 size = j = 0; success = FALSE; strcpy(temp, "");
 strcpy(temp2, input);
 (void) StrToLower(tag);
 (void) StrToLower(temp2);
 strcpy(starttag, MakeStartTag(tag));
 strcpy(endtag, MakeEndTag(tag));
 strcpy(starttagopen, MakeStartTagOpen(tag)); //to avoid
, , <B Style="blabla"> error

127

 /* Part 2: Search for all sub-elements */
 ptr = temp2;
 while ((start = strstr(ptr, starttag)) || (start = strstr(ptr, starttagopen))) {
 end = strstr(ptr, endtag);

 if (!end) //no endtag found
 break;

 success = TRUE;

/* Part 3: Catch the contents */
 for (a=0; a<strlen(endtag); a++) ++end;

 while (start != end)
 temp[j++] = *start++ ; //shorthand notation that saves two more lines
 ptr = end;

 }//while

/* Part 4: Update output string and return indication of success */
 temp[j] = EOS; //if nothing found, then output string is empty since j=0
 strcpy(output, temp);
 return success; //1 if found, 0 if not
}//TagsFromString

/**
 * Name: WordCount
 * Purpose: Counts the number of words (lines) in a file. The advantage with this
 * version of word-count is that is removes duplicate terms.
 * Returns: number of words
 * Notes: Assumes that the file has one word only in each line. Uses the ADT StrList
 * Plan:
 * 1. Create string list from file
 * 2. Computing the size
 * 3. Returning the size
**/

int WordCount(char filename[], int *size){

 StrList words;/* string lists of all the words on a file */

 /* Part 1: Create a string list from the content of a file */
 words = StrListCreate();
 StrListAppendFile(words, filename);
 //read from the specified file and add terms to the list

 /* Part 2: Computing size */
 StrListUnique(words); //removes duplicates in the list
 *size = StrListSize(words); //return number of words now as duplicates are removed
 (*size)--; //somehow one line is empty at the end...

 /* Part 3: Returning the size */
 return *size;
} //WordCount

128

/********************************* stop.c ********************************

 Purpose: Stop list filter finite state machine generator and driver.

 Provenence: Written by and unit tested by C. Fox, 1990.
 Changed by C. Fox, July 1991.
 - added ANSI C declarations
 - branch tested to 95% coverage

 Notes: This module implements a fast finite state machine
 generator, and a driver, for implementing stop list
 filters. The strlist module is a simple string array
 data type implementation.
**/

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <malloc.h>

#include "stop.h"
#include "strlist.h"

/**/

#define FALSE 0
#define TRUE 1
#define EOS '\0'

 /************** Character Classification ***************/
 /* Tokenizing requires that ASCII be broken into character */
 /* classes distinguished for tokenizing. Delimiter chars */
 /* separate tokens. Digits and letters make up the body */
 /* of search terms. */

typedef enum {

 DELIM_CH, /* whitespace, punctuation, etc. */
 DIGIT_CH, /* the digits */
 LETTER_CH, /* upper and lower case */

 } CharClassType;

static CharClassType char_class[128] = {
 /* ^@ */ DELIM_CH, /* ^A */ DELIM_CH, /* ^B */ DELIM_CH,
 /* ^C */ DELIM_CH, /* ^D */ DELIM_CH, /* ^E */ DELIM_CH,
 /* ^F */ DELIM_CH, /* ^G */ DELIM_CH, /* ^H */ DELIM_CH,
 /* ^I */ DELIM_CH, /* ^J */ DELIM_CH, /* ^K */ DELIM_CH,
 /* ^L */ DELIM_CH, /* ^M */ DELIM_CH, /* ^N */ DELIM_CH,
 /* ^O */ DELIM_CH, /* ^P */ DELIM_CH, /* ^Q */ DELIM_CH,
 /* ^R */ DELIM_CH, /* ^S */ DELIM_CH, /* ^T */ DELIM_CH,
 /* ^U */ DELIM_CH, /* ^V */ DELIM_CH, /* ^W */ DELIM_CH,
 /* ^X */ DELIM_CH, /* ^Y */ DELIM_CH, /* ^Z */ DELIM_CH,
 /* ^[*/ DELIM_CH, /* ^\ */ DELIM_CH, /* ^] */ DELIM_CH,
 /* ^^ */ DELIM_CH, /* ^_ */ DELIM_CH, /* */ DELIM_CH,
 /* ! */ DELIM_CH, /* " */ DELIM_CH, /* # */ DELIM_CH,
 /* $ */ DELIM_CH, /* % */ DELIM_CH, /* & */ DELIM_CH,
 /* ' */ DELIM_CH, /* (*/ DELIM_CH, /*) */ DELIM_CH,
 /* * */ DELIM_CH, /* + */ DELIM_CH, /* , */ DELIM_CH,
 /* - */ DELIM_CH, /* . */ DELIM_CH, /* / */ DELIM_CH,
 /* 0 */ DIGIT_CH, /* 1 */ DIGIT_CH, /* 2 */ DIGIT_CH,
 /* 3 */ DIGIT_CH, /* 4 */ DIGIT_CH, /* 5 */ DIGIT_CH,
 /* 6 */ DIGIT_CH, /* 7 */ DIGIT_CH, /* 8 */ DIGIT_CH,
 /* 9 */ DIGIT_CH, /* : */ DELIM_CH, /* ; */ DELIM_CH,
 /* < */ DELIM_CH, /* = */ DELIM_CH, /* > */ DELIM_CH,
 /* ? */ DELIM_CH, /* @ */ DELIM_CH, /* A */ LETTER_CH,
 /* B */ LETTER_CH, /* C */ LETTER_CH, /* D */ LETTER_CH,
 /* E */ LETTER_CH, /* F */ LETTER_CH, /* G */ LETTER_CH,
 /* H */ LETTER_CH, /* I */ LETTER_CH, /* J */ LETTER_CH,
 /* K */ LETTER_CH, /* L */ LETTER_CH, /* M */ LETTER_CH,
 /* N */ LETTER_CH, /* O */ LETTER_CH, /* P */ LETTER_CH,
 /* Q */ LETTER_CH, /* R */ LETTER_CH, /* S */ LETTER_CH,
 /* T */ LETTER_CH, /* U */ LETTER_CH, /* V */ LETTER_CH,
 /* W */ LETTER_CH, /* X */ LETTER_CH, /* Y */ LETTER_CH,
 /* Z */ LETTER_CH, /* [*/ DELIM_CH, /* \ */ DELIM_CH,
 /*] */ DELIM_CH, /* ^ */ DELIM_CH, /* _ */ DELIM_CH,
 /* ` */ DELIM_CH, /* a */ LETTER_CH, /* b */ LETTER_CH,
 /* c */ LETTER_CH, /* d */ LETTER_CH, /* e */ LETTER_CH,
 /* f */ LETTER_CH, /* g */ LETTER_CH, /* h */ LETTER_CH,
 /* i */ LETTER_CH, /* j */ LETTER_CH, /* k */ LETTER_CH,
 /* l */ LETTER_CH, /* m */ LETTER_CH, /* n */ LETTER_CH,
 /* o */ LETTER_CH, /* p */ LETTER_CH, /* q */ LETTER_CH,
 /* r */ LETTER_CH, /* s */ LETTER_CH, /* t */ LETTER_CH,
 /* u */ LETTER_CH, /* v */ LETTER_CH, /* w */ LETTER_CH,
 /* x */ LETTER_CH, /* y */ LETTER_CH, /* z */ LETTER_CH,
 /* { */ DELIM_CH, /* | */ DELIM_CH, /* } */ DELIM_CH,
 /* ~ */ DELIM_CH, /* ^? */ DELIM_CH, };

129

 /************** Character Case Conversion **************/
 /* Term text must be accumulated in a single case. This */
 /* array is used to convert letter case but otherwise */
 /* preserve characters. */

static char convert_case[128] = {
 /* ^@ */ 0, /* ^A */ 0, /* ^B */ 0, /* ^C */ 0,
 /* ^D */ 0, /* ^E */ 0, /* ^F */ 0, /* ^G */ 0,
 /* ^H */ 0, /* ^I */ 0, /* ^J */ 0, /* ^K */ 0,
 /* ^L */ 0, /* ^M */ 0, /* ^N */ 0, /* ^O */ 0,
 /* ^P */ 0, /* ^Q */ 0, /* ^R */ 0, /* ^S */ 0,
 /* ^T */ 0, /* ^U */ 0, /* ^V */ 0, /* ^W */ 0,
 /* ^X */ 0, /* ^Y */ 0, /* ^Z */ 0, /* ^[*/ 0,
 /* ^\ */ 0, /* ^] */ 0, /* ^^ */ 0, /* ^_ */ 0,
 /* */ ' ', /* ! */ '!', /* " */ '"', /* # */ '#',
 /* $ */ '$', /* % */ '%', /* & */ '&', /* ' */ '\'',
 /* (*/ '(', /*) */ ')', /* * */ '*', /* + */ '+',
 /* , */ ',', /* - */ '-', /* . */ '.', /* / */ '/',
 /* 0 */ '0', /* 1 */ '1', /* 2 */ '2', /* 3 */ '3',
 /* 4 */ '4', /* 5 */ '5', /* 6 */ '6', /* 7 */ '7',
 /* 8 */ '8', /* 9 */ '9', /* : */ ':', /* ; */ ';',
 /* < */ '<', /* = */ '=', /* > */ '>', /* ? */ '?',
 /* @ */ '@', /* A */ 'a', /* B */ 'b', /* C */ 'c',
 /* D */ 'd', /* E */ 'e', /* F */ 'f', /* G */ 'g',
 /* H */ 'h', /* I */ 'i', /* J */ 'j', /* K */ 'k',
 /* L */ 'l', /* M */ 'm', /* N */ 'n', /* O */ 'o',
 /* P */ 'p', /* Q */ 'q', /* R */ 'r', /* S */ 's',
 /* T */ 't', /* U */ 'u', /* V */ 'v', /* W */ 'w',
 /* X */ 'x', /* Y */ 'y', /* Z */ 'z', /* [*/ '[',
 /* \ */ 92, /*] */ ']', /* ^ */ '^', /* _ */ '_',
 /* ` */ '`', /* a */ 'a', /* b */ 'b', /* c */ 'c',
 /* d */ 'd', /* e */ 'e', /* f */ 'f', /* g */ 'g',
 /* h */ 'h', /* i */ 'i', /* j */ 'j', /* k */ 'k',
 /* l */ 'l', /* m */ 'm', /* n */ 'n', /* o */ 'o',
 /* p */ 'p', /* q */ 'q', /* r */ 'r', /* s */ 's',
 /* t */ 't', /* u */ 'u', /* v */ 'v', /* w */ 'w',
 /* x */ 'x', /* y */ 'y', /* z */ 'z', /* { */ '{',
 /* | */ '|', /* } */ '}', /* ~ */ '~', /* ^? */ 0, };

#define DEAD_STATE -1 /* used to block a DFA */
#define TABLE_INCREMENT 256 /* used to grow tables */

 /************************* Hashing **************************/
 /* Sets of suffixes labeling states during the DFA construction */
 /* are hashed to speed searching. The hashing function uses an */
 /* entire integer variable range as its hash table size; in an */
 /* effort to get a good spread through this range, hash values */
 /* start big, and are incremented by a lot with every new word */
 /* in the list. The collision rate is low using this method */

#define HASH_START 5775863
#define HASH_INCREMENT 38873647

 /************** State Label Binary Search Tree **************/
 /* During DFA construction, all states must be searched by */
 /* their labels to make sure that the minimum number of states */
 /* are used. This operation is sped up by hashing the labels */
 /* to a signature value, then storing the signatures and labels */
 /* in a binary search tree. The tree is destroyed once the DFA */
 /* is fully constructed. */

typedef struct TreeNode {
 StrList label; /* state label used as search key */
 unsigned signature; /* hashed label to speed searching */
 int state; /* whose label is representd by node */
 struct TreeNode *left; /* left binary search subtree */
 struct TreeNode *right; /* right binary search subtree */
 } SearchTreeNode, *SearchTree;

 /********************* DFA State Table **********************/
 /* The state table is an array of structures holding a state */
 /* label, a count of the arcs out of the state, a pointer into */
 /* the arc table for these arcs, and a final state flag. The */
 /* label field is used only during machine construction. */

typedef struct {
 StrList label; /* for this state - used during build */
 int num_arcs; /* for this state in the arc table */
 int arc_offset; /* for finding arcs in the arc table */
 short is_final; /* TRUE iff this is a final state */
 } StateTableEntry, *StateTable;

130

 /********************** DFA Arc Table ***********************/
 /* The arc table lists all transitions for all states in a DFA */
 /* in compacted form. Each state's transitions are offset from */
 /* the start of the table, then listed in arc label order. */
 /* Transitions are found by a linear search of the sub-section */
 /* of the table for a given state. */

typedef struct {
 char label; /* character label on an out-arrow */
 int target; /* the target state for the out-arrow */
 } ArcTableEntry, *ArcTable;

 /********************** DFA Structure ***********************/
 /* A DFA is represented as a pointer to a structure holding the */
 /* machine's state and transition tables, and bookkeepping */
 /* counters. The tables are arrays whose space is malloc'd, */
 /* then realloc'd if more space is required. Once a machine is */
 /* constructed, the table space is realloc'd one last time to */
 /* fit the needs of the machine exactly. */

typedef struct _DfaStruct {
 int num_states; /* in the DFA (and state table) */
 int max_states; /* now allocated in the state table */
 int num_arcs; /* in the arc table for this machine */
 int max_arcs; /* now allocated in the arc table */
 StateTable state_table; /* the compacted DFA state table */
 ArcTable arc_table; /* the compacted DFA transition table */
 SearchTree tree; /* storing state labels used in build */
 } DFAStruct;

/**/
/************************* Function Declarations **************************/

#ifdef __STDC__

static char *GetMemory(char *ptr, int num_bytes);
static void DestroyTree(SearchTree tree);
static int GetState(DFA machine, StrList label, unsigned signature);
static void AddArc(DFA machine, int state, char arc_label,
 StrList state_label, unsigned state_signature);

extern DFA BuildDFA(StrList words);
extern char *GetTerm(FILE *stream, DFA machine, int size, char *output);

#else

static char *GetMemory();
static void DestroyTree();
static int GetState();
static void AddArc();

extern DFA BuildDFA();
extern char *GetTerm();

#endif

/**/
/************************ Private Function Definitions ********************/

/*FN***

 GetMemory(ptr, num_bytes)

 Returns: char * -- new/expanded block of memory

 Purpose: Rationalize memory allocation and handle errors

 Plan: Part 1: Allocate memory with supplied allocation functions
 Part 2: Handle any errors
 Part 3: Return the allocated block of memory

 Notes: None.
**/

static char *
GetMemory(ptr, num_bytes)
 char *ptr; /* in: expanded block; NULL if nonesuch */
 int num_bytes; /* in: number of bytes to allocate */
 {
 char *memory; /* temporary for holding results */

 /* Part 1: Allocate memory with supplied allocation functions */
 if (NULL == ptr)
 memory = malloc((unsigned)num_bytes);
 else
 memory = realloc(ptr, (unsigned)num_bytes);

131

 /* Part 2: Handle any errors */
 if (NULL == memory)
 {
 (void)fprintf(stderr, "malloc failure--aborting\n");
 exit(1);
 }

 /* Part 3: Return the allocated block of memory */
 return(memory);

 } /* GetMemory */

/*FN***

 DestroyTree(tree)

 Returns: void

 Purpose: Destroy a binary search tree created during machine construction

 Plan: Part 1: Return right away of there is no tree
 Part 2: Deallocate the subtrees
 Part 3: Deallocate the root

 Notes: None.
**/

static void
DestroyTree(tree)
 SearchTree tree; /* in: search tree destroyed */
 {
 /* Part 1: Return right away of there is no tree */
 if (NULL == tree) return;

 /* Part 2: Deallocate the subtrees */
 if (NULL != tree->left) DestroyTree(tree->left);
 if (NULL != tree->right) DestroyTree(tree->right);

 /* Part 3: Deallocate the root */
 tree->left = tree->right = NULL;
 (void)free((char *)tree);

 } /* DestroyTree */

/*FN***

 GetState(machine, label, signature)

 Returns: int -- state with the given label

 Purpose: Search a machine and return the state with a given state label

 Plan: Part 1: Search the tree for the requested state
 Part 2: If not found, add the label to the tree
 Part 3: Return the state number

 Notes: This machine always returns a state with the given label
 because if the machine does not have a state with the given
 label, then one is created.
**/

static int
GetState(machine, label, signature)
 DFA machine; /* in: DFA whose state labels are searched;*/
 StrList label; /* in: state label searched for */
 unsigned signature; /* in: signature of the label requested */
 {
 SearchTree *ptr; /* pointer to a search tree link field */
 SearchTree new_node; /* for a newly added search tree node */

 /* Part 1: Search the tree for the requested state */
 ptr = &(machine->tree);
 while ((NULL != *ptr) && ((signature != (*ptr)->signature)
 || !StrListEqual(label,(*ptr)->label)))
 ptr = (signature <= (*ptr)->signature) ? &(*ptr)->left : &(*ptr)->right;

 /* Part 2: If not found, add the label to the tree */
 if (NULL == *ptr)
 {
 /* create a new node and fill in its fields */
 new_node = (SearchTree)GetMemory(NULL, sizeof(SearchTreeNode));
 new_node->signature = signature;
 new_node->label = (StrList)label;
 new_node->state = machine->num_states;
 new_node->left = new_node->right = NULL;

132

 /* allocate more states if needed, set up the new state */
 if (machine->num_states == machine->max_states)
 {
 machine->max_states += TABLE_INCREMENT;
 machine->state_table =
 (StateTable)GetMemory((char*)(machine->state_table), machine-
>max_states*sizeof(StateTableEntry));
 }
 machine->state_table[machine->num_states].label = (StrList)label;
 machine->num_states++;

 /* hook the new node into the binary search tree */
 *ptr = new_node;
 }
 else
 StrListDestroy(label);

 /* Part 3: Return the state number */
 return((*ptr)->state);

 } /* GetState */

/*FN***

 AddArc(machine, state, arc_label, state_label, state_signature)

 Returns: void

 Purpose: Add an arc between two states in a DFA

 Plan: Part 1: Search for the target state among existing states
 Part 2: Make sure the arc table is big enough
 Part 3: Add the new arc

 Notes: None.
**/

static void
AddArc(DFA machine, int state, char arc_label,
 StrList state_label, unsigned state_signature)
// DFA machine; /* in/out: machine with an arc added */
// int state; /* in: with an out arc added */
// char arc_label; /* in: label on the new arc */
// StrList state_label; /* in: label on the target state */
// unsigned state_signature; /* in: label hash signature to speed searching */
 {
 register int target; /* destination state for the new arc */

 /* Part 1: Search for the target state among existing states */
 StrListSort(state_label);
 target = GetState(machine, state_label, state_signature);

 /* Part 2: Make sure the arc table is big enough */
 if (machine->num_arcs == machine->max_arcs)
 {
 machine->max_arcs += TABLE_INCREMENT;

 machine->arc_table =
 machine->arc_table = (ArcTable) GetMemory((char*) machine->arc_table,
 machine->max_arcs * sizeof(ArcTableEntry));
 }

 /* Part 3: Add the new arc */
 machine->arc_table[machine->num_arcs].label = arc_label;
 machine->arc_table[machine->num_arcs].target = target;
 machine->num_arcs++;
 machine->state_table[state].num_arcs++;

 } /* AddArc */

/*FN***

 BuildDFA(words)

 Returns: DFA -- newly created finite state machine

 Purpose: Build a DFA to recognize a list of words

 Plan: Part 1: Allocate space and initialize variables
 Part 2: Make and label the DFA start state
 Part 3: Main loop - build the state and arc tables
 Part 4: Deallocate the binary search tree and the state labels
 Part 5: Reallocate the tables to squish them down
 Part 6: Return the newly constructed DFA

 Notes: None.
**/

133

DFA
BuildDFA(words)
 StrList words; /* in: that the machine is built to recognize */
 {
 DFA machine; /* local for easier access to machine */
 register int state; /* current state's state number */
 char arc_label; /* for the current arc when adding arcs */
 char *string; /* element in a set of state labels */
 char ch; /* the first character in a new string */
 StrList current_label; /* set of strings labeling a state */
 StrList target_label; /* labeling the arc target state */
 unsigned target_signature; /* hashed label for binary search tree */
 register int i; /* for looping through strings */

 /* Part 1: Allocate space and initialize variables */
 machine = (DFA)GetMemory(NULL, sizeof(DFAStruct));

 machine->max_states = TABLE_INCREMENT;
 machine->state_table =
 (StateTable)GetMemory(NULL, machine->max_states*sizeof(StateTableEntry));
 machine->num_states = 0;

 machine->max_arcs = TABLE_INCREMENT;
 machine->arc_table =
 (ArcTable)GetMemory(NULL, machine->max_arcs * sizeof(ArcTableEntry));
 machine->num_arcs = 0;

 machine->tree = NULL;

 /* Part 2: Make and label the DFA start state */
 StrListUnique(words); /* sort and unique the list */
 machine->state_table[0].label = words;
 machine->num_states = 1;

 /* Part 3: Main loop - build the state and arc tables */
 for (state = 0; state < machine->num_states; state++)
 {
 /* The current state has nothing but a label, so */
 /* the first order of business is to set up some */
 /* of its other major fields */
 machine->state_table[state].is_final = FALSE;
 machine->state_table[state].arc_offset = machine->num_arcs;
 machine->state_table[state].num_arcs = 0;

 /* Add arcs to the arc table for the current state */
 /* based on the state's derived set. Also set the */
 /* state's final flag if the empty string is found */
 /* in the suffix list */
 current_label = machine->state_table[state].label;
 target_label = StrListCreate();
 target_signature = HASH_START;
 arc_label = EOS;
 for (i = 0; i < StrListSize(current_label); i++)
 {
 /* get the next string in the label and lop it */
 string = StrListPeek(current_label, i);
 ch = *string++;

 /* the empty string means mark this state as final */
 if (EOS == ch)
 { machine->state_table[state].is_final = TRUE; continue; }

 /* make sure we have a legitimate arc_label */
 if (EOS == arc_label) arc_label = ch;

 /* if the first character is new, then we must */
 /* add an arc for the previous first character */
 if (ch != arc_label)
 {
 AddArc(machine, state, arc_label, target_label, target_signature);
 target_label = StrListCreate();
 target_signature = HASH_START;
 arc_label = ch;
 }

 /* add the current suffix to the target state label */
 StrListAppend(target_label, string);
 target_signature += (*string + 1) * HASH_INCREMENT;
 while (*string) target_signature += *string++;
 }

 /* On loop exit we have not added an arc for the */
 /* last bunch of suffixes, so we must do so, as */
 /* long as the last set of suffixes is not empty */
 /* (which happens when the current state label */
 /* is the singleton set of the empty string). */

134

 if (0 < StrListSize(target_label))
 AddArc(machine, state, arc_label, target_label, target_signature);
 }

 /* Part 4: Deallocate the binary search tree and the state labels */
 DestroyTree(machine->tree); machine->tree = NULL;
 for (i = 0; i < machine->num_states; i++)
 {
 StrListDestroy(machine->state_table[i].label);
 machine->state_table[i].label = NULL;
 }

 /* Part 5: Reallocate the tables to squish them down */
 machine->state_table = (StateTable)GetMemory((char *) machine->state_table,
 machine->num_states * sizeof(StateTableEntry));
 machine->arc_table = (ArcTable)GetMemory((char *) machine->arc_table,
 (machine->num_arcs * sizeof(ArcTableEntry)));

 /* Part 6: Return the newly constructed DFA */
 return(machine);

 } /* BuildDFA */

/*FN***

 GetTerm(stream, machine, size, output)

 Returns: char * -- NULL if stream is exhausted, otherwise output buffer

 Purpose: Get the next token from an input stream, filtering stop words

 Plan: Part 1: Return NULL immediately if there is no input
 Part 2: Initialize the local variables
 Part 3: Main Loop: Put an unfiltered word into the output buffer
 Part 4: Return the output buffer

 Notes: This routine runs the DFA provided as the machine parameter,
 and collects the text of any term in the output buffer. If
 a stop word is recognized in this process, it is skipped.
 Care is also taken to be sure not to overrun the output buffer.
**/

char *
GetTerm(stream, machine, size, output)
 FILE *stream; /* in: source of input characters */
 DFA machine; /* in: finite state machine driving process */
 int size; /* in: bytes in the output buffer */
 char *output; /* in/out: where the next token in placed */
 {
 char *outptr; /* for scanning through the output buffer */
 int ch; /* current character during input scan */
 register int state; /* current state during DFA execution */

 /* Part 1: Return NULL immediately if there is no input */
 if (EOF == (ch = getc(stream))) return(NULL);

 /* Part 2: Initialize the local variables */
 outptr = output;

 /* Part 3: Main Loop: Put an unfiltered word into the output buffer */
 do
 {
 /* scan past any leading delimiters */
 while ((EOF != ch) &&
 ((DELIM_CH == char_class[ch]) ||
 (DIGIT_CH == char_class[ch]))) ch = getc(stream);

 /* start the machine in its start state */
 state = 0;

 /* copy input to output until reaching a delimiter, and also */
 /* run the DFA on the input to watch for filtered words */
 while ((EOF != ch) && (DELIM_CH != char_class[ch]))
 {
 if (outptr == (output+size-1)) { outptr = output; state = 0; }
 *outptr++ = convert_case[ch];

 if (DEAD_STATE != state)
 {
 register int i; /* for scanning through arc labels */
 int arc_start; /* where the arc label list starts */
 int arc_end; /* where the arc label list ends */

 arc_start = machine->state_table[state].arc_offset;
 arc_end = arc_start + machine->state_table[state].num_arcs;

 for (i = arc_start; i < arc_end; i++)

135

 if (convert_case[ch] == machine->arc_table[i].label)
 { state = machine->arc_table[i].target; break; }

 if (i == arc_end) state = DEAD_STATE;
 }

 ch = getc(stream);
 }

 /* start from scratch if a stop word is recognized */
 if ((DEAD_STATE != state) && machine->state_table[state].is_final)
 outptr = output;

 /* terminate the output buffer */
 *outptr = EOS;
 }
 while ((EOF != ch) && !*output);

 /* Part 4: Return the output buffer */
 return(output);

 } /* GetTerm */

136

/******************************* strlist.c *********************************

 Purpose: String list abstract data type implementation.

 Notes: This module implements a straightforward string ordered list
 abstract data type. It is optimized for appending and deleting
 from the end of the list. Since they are ordered lists, string
 lists may be sorted, and their members are addressed by ordinal
 position (starting from 0).
**/

#include <stdio.h>
#include <malloc.h>
#include <string.h>

#include "strlist.h"

/**/
/****************** Private Defines and Data Structures *******************/

#define FALSE 0
#define TRUE 1
#define EOS '\0'

#define INCREMENT 32 /* increase size by this much */
#define MAX_LINE 128 /* when reading text files */

typedef struct _StrListStruct {

 short size; /* current length of the list */
 short max_size; /* room for this many strings */
 char **string; /* the string array */

 } StrListStruct;

 /********* GetMemory and FreeMemory Macros ********/

#define GetMemory(b,s) ((b) ? realloc(b,s) : malloc(s))
#define FreeMemory(b) ((void)free(b))

/**/
/********************** Private Routine Declarations **********************/

#ifdef __STDC__

static int ExpandArray(StrList list);
static void ISort(char **string, int lb, int ub);
static void QSort(char **string, int lb, int ub);

#else

static int ExpandArray(/* list */);
static void ISort(/* string, lb, ub */);
static void QSort(/* string, lb, ub */);

#endif

/*FN**

 ExpandArray(list)

 Returns: int -- TRUE (1) on success, FALSE (0) otherwise

 Purpose: Increase the string array to hold more data

 Plan: Part 1: Increase the maximum list size to its new value
 Part 2: Allocate a new chunk of memory
 Part 3: Return an indication of success

 Notes: None
**/

static int
ExpandArray(list)
 StrList list; /* in: string list whose string array is enlarged */
 {

 /* Part 1: Increase the maximum list size to its new value */
 list->max_size += INCREMENT;

 /* Part 2: Allocate a new chunk of memory */
 list->string = (char **)GetMemory((char *)list->string,
 (list->max_size*sizeof(char *)));

 /* Part 3: Return an indication of success */
 return((list->string) ? TRUE : FALSE);

137

 } /* ExpandArray */

/*FN**

 ISort(string, lb, ub)

 Returns: void

 Purpose: Insertion sort a string array forward using strcmp ordering

 Plan: Part 1: Put smallest in place as a sentinal
 Part 2: Insert as necessary

 Notes: None
**/

static void
ISort(string, lb, ub)
 char **string; /* in/out: string array sorted */
 int lb,ub; /* in: array bounds for sort */
 {
 register int i,j; /* for scanning through the list */
 char *tmp; /* for swaps */

 /* Part 1: Put smallest in place as a sentinal */
 for (j = lb, i = lb+1; i <= ub; i++)
 if (0 < strcmp(string[j],string[i])) j = i;
 tmp = string[lb]; string[lb] = string[j]; string[j] = tmp;

 /* Part 2: Insert as necessary */
 for (i = lb+2; i <= ub; i++)
 {
 tmp = string[i];
 for (j = i; 0 < strcmp(string[j-1],tmp); j--) string[j] = string[j-1];
 string[j] = tmp;
 }

 } /* ISort*/

/*FN**

 QSort(string, lb, ub)

 Returns: void

 Purpose: Quicksort an array of strings forward using strcmp ordering

 Plan: Part 1: Use insertion sort of the list is short
 Part 2: Do median of three pivot value selection
 Part 3: Put the pivot out of the way at the top
 Part 5: Swap the pivot back into the mid of the list
 Part 6: Recursively sort the sublists

 Notes: Standard quicksort function with the two main enhancements:
 median of three partitioning to find a good pivot value,
 and sorting small arrays with insertion sort.
**/

static void
QSort(char **string, int lb, int ub)
 //char **string; /* in/out: string array sorted */
 //int lb,ub; /* in: array bounds for sort */
 {
 register int lft; /* list pointer that closes from the left */
 register int rgt; /* list pointer that closes from the right */
 register int mid; /* index of the median of three value */
 char *tmp; /* for string pointer swaps */
 char *pivot; /* the pivot value string */

 /* Part 1: Use insertion sort of the list is short */
 if (ub-lb < 12) { ISort(string, lb, ub); return; }

 /* Part 2: Do median of three pivot value selection */
 mid = (lb+ub)/2;
 if (strcmp(string[mid],string[lb]) < 0)
 { tmp = string[mid]; string[mid] = string[lb]; string[lb] = tmp; }
 if (strcmp(string[ub],string[mid]) < 0)
 { tmp = string[mid]; string[mid] = string[ub]; string[ub] = tmp; }
 if (strcmp(string[mid],string[lb]) < 0)
 { tmp = string[mid]; string[mid] = string[lb]; string[lb] = tmp; }

 /* Part 3: Put the pivot out of the way at the top */
 tmp = string[mid]; string[mid] = string[ub-1]; string[ub-1] = tmp;

 /* Part 4: Partition around the pivot value */
 lft = lb;
 rgt = ub-1;

138

 pivot = string[ub-1];
 do
 {
 do lft++; while (strcmp(string[lft],pivot) < 0);
 do rgt--; while (strcmp(pivot,string[rgt]) < 0);
 tmp = string[lft]; string[lft] = string[rgt]; string[rgt] = tmp;
 }
 while (lft < rgt);

 /* Part 5: Swap the pivot back into the mid of the list */
 string[rgt] = string[lft]; string[lft] = string[ub-1]; string[ub-1] = tmp;

 /* Part 6: Recursively sort the sublists */
 QSort(string, lb, lft-1);
 QSort(string, rgt+1, ub);

 } /* QSort */

/**/
/********************** Public Routine Declarations ***********************/

/*FN***

 StrListAppend(list, string)

 Returns: void

 Purpose: Place a string on the end of a string list

 Plan: Part 1: Standard parameter sanity check
 Part 2: Expand the list as necessary
 Part 3: Append the new string to the tail

 Notes: None
**/

void
StrListAppend(list, string)
 StrList list; /* in/out: list appended to */
 char *string; /* in: the appended string */
 {
 int length; /* of the added string and its terminator */

 /* Part 1: Standard parameter sanity check */
 if (!list || !string) return;

 /* Part 2: Expand the list as necessary */
 if ((list->size == list->max_size) && !ExpandArray(list)) return;

 /* Part 3: Append the new string to the tail */
 length = strlen(string) + 1;
 list->string[list->size] = GetMemory(NULL, length);
 (void)memcpy(list->string[list->size], string, length);
 list->size++;

 } /* StrListAppend */

/*FN***

 StrListAppendFile(list, filename)

 Returns: void

 Purpose: Place all lines from a file on the end of a string list

 Plan: Part 1: Standard parameter sanity check
 Part 2: Expand the list as necessary
 Part 3: Append the new string to the tail

 Notes: None
**/

void
StrListAppendFile(list, filename)
 StrList list; /* in/out: list appended to */
 char *filename; /* in: the appended file */
 {
 FILE *file; /* file handle for the text input file */
 char buffer[MAX_LINE]; /* for storing text input file lines */
 int length; /* of the added string and its terminator */
 register int i; /* for looping through the TextBlock lines */

 /* Part 1: Standard parameter sanity check */
 if (!list || !filename) return;

 /* Part 2: Open the text input file; check for error */
 if (NULL == (file = fopen(filename,"r"))) return;

139

 /* Part 3: Append to the list, checking for errors */
 while (NULL != fgets(buffer,MAX_LINE,file))
 {
 if ((list->size == list->max_size) && !ExpandArray(list)) return;

 i = list->size;
 length = strlen(buffer);
 list->string[i] = GetMemory(NULL, (unsigned)length);
 if (NULL == list->string[i]) return;
 (void)memcpy(list->string[i], buffer, length);
 list->string[i][length-1] = EOS;
 list->size++;
 }

 /* Part 4: Close the text input file */
 (void)fclose(file);

 } /* StrListAppendFile */

/*FN***

 StrListCreate()

 Returns: StrList -- a new structure, or NULL on failure

 Purpose: Allocate and initialize a new string list structure

 Plan: Part 1: Allocate space for the string list object
 Part 2: Initialize the structure fields
 Part 3: Return the new string list

 Notes: None
**/

StrList
StrListCreate()
 {
 StrList list; /* the new list returned */

 /* Part 1: Allocate space for the string list object */
 if (!(list = (StrList)GetMemory(NULL,sizeof(StrListStruct))))
 return(NULL);

 /* Part 2: Initialize the structure fields */
 list->string = NULL;
 list->size = list->max_size = 0;
 if (!ExpandArray(list))
 { FreeMemory((char *)list); return(NULL); }

 /* Part 3: Return the new string list */
 return(list);

 } /* StrListCreate */

/*FN***

 StrListDestroy(list)

 Returns: void

 Purpose: Deallocate the space used for a string list

 Plan: Part 1: Standard parameter sanity check
 Part 2: Free all the space

 Notes: None
**/

void
StrListDestroy(list)
 StrList list; /* in: the list destroyed */
 {
 register int i; /* for scanning through the list */

 /* Part 1: Standard parameter sanity check */
 if (!list) return;

 /* Part 2: Free all the space */
 for (i = 0; i < list->size; i++) FreeMemory((char *)(list->string[i]));
 FreeMemory((char *)list);

 } /* StrListDestroy */

/*FN***

140

 StrListElementEqual(list1, list2)

 Returns: int -- TRUE if the term in position "pos" from list1 is found in list2

 Purpose: See if the term in position "pos" from list1 also exists in list2

 Plan: Part 1: Say not equal if the parameters are bad
 Part 2: Compare the element in the first list with every element in list2
 Part 3: Say false if nothing is found

 Notes: None
**/

int
StrListElementEqual(pos, list1, list2)
 StrList list1,list2; /* in: lists compared */
 int pos;
 {
 register int i; /* for scanning through the anti-stoplist */
 int success;

 /* Part 1: Say not equal if the parameters are bad */
 if (!list1 || !list2) return(FALSE);

 /* Part 3: Compare the lists element by element */
 success = 0;
 for (i = 0; i < list2->size; i++){
 if (strcmp(list1->string[pos],list2->string[i]) ==0) // compares two strings
 success = 1;
 }
 if (success) return(TRUE);
 else return (FALSE);

 } /* StrListElementEqual */

/*FN***

 StrListCount(pos, list1, list2, start2)

**/

int
StrListCount(pos, list1, list2, start2)
 StrList list1,list2; /* in: lists compared */
 int pos, start2;
 {
 register int i; /* for scanning through the anti-stoplist */
 int antall;

 /* Part 1: Say not equal if the parameters are bad */
 if (!list1 || !list2) return(FALSE);

 /* Part 3: Compare the lists element by element */
 antall = 0;
 for (i = 0; i < (list2->size); i++){
// while (i < list2->size){
 if (strcmp(list1->string[pos],list2->string[i]) ==0) // compares two strings
 antall++;
 }
 return antall;

 } /* StrListCount */

/*FN***

 StrListEqual(list1, list2)

 Returns: int -- TRUE if the lists are equivalent, FALSE otherwise

 Purpose: See if two lists have identical elements

 Plan: Part 1: Say not equal if the parameters are bad
 Part 2: Say not equal if sizes are different
 Part 3: Compare lists element by element
 Part 4: Say equal if everything checks out

 Notes: None
**/

int
StrListEqual(list1, list2)
 StrList list1,list2; /* in: lists compared */
 {
 register int i; /* for scanning through the lists */

141

 /* Part 1: Say not equal if the parameters are bad */
 if (!list1 || !list2) return(FALSE);

 /* Part 2: Say not equal if sizes are different */
 if (list1->size != list2->size) return(FALSE);

 /* Part 3: Compare the lists element by element */
 for (i = 0; i < list1->size; i++)
 if (*(list1->string[i]) != *(list2->string[i]))
 return(FALSE);
 else if (0 != strcmp(list1->string[i],list2->string[i]))
 return(FALSE);

 /* Part 5: Say equal if everything checks out */
 return(TRUE);

 } /* StrListEqual */

/*FN***
SAH july 2002: Check if term is included in list. Return false otherwise
**/

int
StrListMember(char term[], StrList list){
register int i;

 for (i = 0; i < list->size; i++) {
 if (0 == strcmp(term,list->string[i])) //strcmp returns zero if strings are identical
 return TRUE; //found
 }
 return FALSE; //if word not found

} //StrListMember

/*FN***

 StrListPeek(list, index)

 Returns: char * -- pointer to the requested string; NULL on error

 Purpose: Peek a string by its list index. (Get an element from the list)

 Plan: Part 1: Standard parameter sanity check
 Part 2: Return the requested string

 Notes: Note that this function is a hole in the data type encapsulation:
 it should return a copy, but this would force the consumer to
 deallocate the string. Design call.
**/

char *
StrListPeek(list, index)
 StrList list; /* in: list retrieved from */
 int index; /* in: which string to fetch */
 {
 /* Part 1: Standard parameter sanity check */
 if (!list || (index < 0) || (list->size <= index)) return(NULL);

 /* Part 2: Return the requested string */
 return(list->string[index]);

 } /* StrListPeek */

/*FN***

 StrListSize(list)

 Returns: int -- the size of the list, 0 on error

 Purpose: Grab the list size

 Plan: Return the list size field

 Notes: None
**/

int
StrListSize(list)
 StrList list; /* in: list queried */
 {

 if (!list) return(0); else return(list->size);

 } /* StrListSize */

142

/*FN***

 StrListSort(list)

 Returns: void

 Purpose: Sort a single string list using strcmp ordering

 Plan: Part 1: Do parameter sanity checks, then sort

 Notes: None
**/

void
StrListSort(list)
 StrList list; /* in/out: list sorted */
 {
 /* Part 1: Do parameter sanity checks, then sort */
 if (!list) return;
 QSort(list->string, 0, list->size-1);

 } /* StrListSort */

/*FN***

 StrListUnique(list)

 Returns: void

 Purpose: Sort a single string list using strcmp ordering, then remove
 duplicates.

 Plan: Part 1: Do parameters sanity checks
 Part 2: Sort the list
 Part 3: Remove duplicate strings

 Notes: None
**/

void
StrListUnique(list)
 StrList list; /* in/out: list sorted and uniqued */
 {
 register i,j; /* counters for copying down over duplicates */

 /* Part 1: Do parameter sanity checks */
 if (!list) return;

 /* Part 2: Sort the list */
 QSort(list->string, 0, list->size-1);

 /* Part 3: Remove duplicate strings */
 if (1 < list->size)
 {
 for (j = 0, i = 1; i < list->size; i++)
 {
 if (0 == strcmp(list->string[i],list->string[j]))
 (void)free(list->string[j]);
 else
 j++;
 if (j < i) list->string[j] = list->string[i];
 }
 list->size = j + 1;
 }

 } /* StrListUnique */

143

/******************************* stem.c ***********************************

 Purpose: Implementation of the Porter stemming algorithm documented
 in: Porter, M.F., "An Algorithm For Suffix Stripping,"
 Program 14 (3), July 1980, pp. 130-137.

 Provenance: Written by B. Frakes and C. Cox, 1986.
 Changed by C. Fox, 1990.
 - made measure function a DFA
 - restructured structs
 - renamed functions and variables
 - restricted function and variable scopes
 Changed by C. Fox, July, 1991.
 - added ANSI C declarations
 - branch tested to 90% coverage

 Notes: This code will make little sense without the the Porter
 article. The stemming function converts its input to
 lower case.
**/

/************************ Standard Include Files *************************/

#include <stdio.h>
#include <string.h>
#include <ctype.h>

/***/
/***************** Private Defines and Data Structures *******************/

#define FALSE 0
#define TRUE 1
#define EOS '\0'

#define IsVowel(c) ('a'==(c)||'e'==(c)||'i'==(c)||'o'==(c)||'u'==(c))

typedef struct {
 int id; /* returned if rule fired */
 char *old_end; /* suffix replaced */
 char *new_end; /* suffix replacement */
 int old_offset; /* from end of word to start of suffix */
 int new_offset; /* from beginning to end of new suffix */
 int min_root_size; /* min root word size for replacement */
 int (*condition)(); /* the replacement test function */
 } RuleList;

static char LAMBDA[1] = ""; /* the constant empty string */
static char *end; /* pointer to the end of the word */

/***/
/******************** Private Function Declarations **********************/

#ifdef __STDC__

static int WordSize(char *word);
static int ContainsVowel(char *word);
static int EndsWithCVC(char *word);
static int AddAnE(char *word);
static int RemoveAnE(char *word);
static int ReplaceEnd(char *word, RuleList *rule);
//her var det ikke samsvar mellom prototype og funksjonens typer.
//Stod slik før (har nå modifisert til at pekeren er med) :
//static int ReplaceEnd(char *word, RuleList rule); //rule skal være *rule

#else

static int WordSize(/* word */);
static int ContainsVowel(/* word */);
static int EndsWithCVC(/* word */);
static int AddAnE(/* word */);
static int RemoveAnE(/* word */);
static int ReplaceEnd(/* word, rule */);

#endif

/**/
/***************** Initialized Private Data Structures ********************/

static RuleList step1a_rules[] =
 {
 101, "sses", "ss", 3, 1, -1, NULL,
 102, "ies", "i", 2, 0, -1, NULL,
 103, "ss", "ss", 1, 1, -1, NULL,
 104, "s", LAMBDA, 0, -1, -1, NULL,
 000, NULL, NULL, 0, 0, 0, NULL,
 };

144

static RuleList step1b_rules[] =
 {
 105, "eed", "ee", 2, 1, 0, NULL,
 106, "ed", LAMBDA, 1, -1, -1, ContainsVowel,
 107, "ing", LAMBDA, 2, -1, -1, ContainsVowel,
 000, NULL, NULL, 0, 0, 0, NULL,
 };

static RuleList step1b1_rules[] =
 {
 108, "at", "ate", 1, 2, -1, NULL,
 109, "bl", "ble", 1, 2, -1, NULL,
 110, "iz", "ize", 1, 2, -1, NULL,
 111, "bb", "b", 1, 0, -1, NULL,
 112, "dd", "d", 1, 0, -1, NULL,
 113, "ff", "f", 1, 0, -1, NULL,
 114, "gg", "g", 1, 0, -1, NULL,
 115, "mm", "m", 1, 0, -1, NULL,
 116, "nn", "n", 1, 0, -1, NULL,
 117, "pp", "p", 1, 0, -1, NULL,
 118, "rr", "r", 1, 0, -1, NULL,
 119, "tt", "t", 1, 0, -1, NULL,
 120, "ww", "w", 1, 0, -1, NULL,
 121, "xx", "x", 1, 0, -1, NULL,
 122, LAMBDA, "e", -1, 0, -1, AddAnE,
 000, NULL, NULL, 0, 0, 0, NULL,
 };

static RuleList step1c_rules[] =
 {
 123, "y", "i", 0, 0, -1, ContainsVowel,
 000, NULL, NULL, 0, 0, 0, NULL,
 };

static RuleList step2_rules[] =
 {
 203, "ational", "ate", 6, 2, 0, NULL,
 204, "tional", "tion", 5, 3, 0, NULL,
 205, "enci", "ence", 3, 3, 0, NULL,
 206, "anci", "ance", 3, 3, 0, NULL,
 207, "izer", "ize", 3, 2, 0, NULL,
 208, "abli", "able", 3, 3, 0, NULL,
 209, "alli", "al", 3, 1, 0, NULL,
 210, "entli", "ent", 4, 2, 0, NULL,
 211, "eli", "e", 2, 0, 0, NULL,
 213, "ousli", "ous", 4, 2, 0, NULL,
 214, "ization", "ize", 6, 2, 0, NULL,
 215, "ation", "ate", 4, 2, 0, NULL,
 216, "ator", "ate", 3, 2, 0, NULL,
 217, "alism", "al", 4, 1, 0, NULL,
 218, "iveness", "ive", 6, 2, 0, NULL,
 219, "fulnes", "ful", 5, 2, 0, NULL,
 220, "ousness", "ous", 6, 2, 0, NULL,
 221, "aliti", "al", 4, 1, 0, NULL,
 222, "iviti", "ive", 4, 2, 0, NULL,
 223, "biliti", "ble", 5, 2, 0, NULL,
 000, NULL, NULL, 0, 0, 0, NULL,
 };

static RuleList step3_rules[] =
 {
 301, "icate", "ic", 4, 1, 0, NULL,
 302, "ative", LAMBDA, 4, -1, 0, NULL,
 303, "alize", "al", 4, 1, 0, NULL,
 304, "iciti", "ic", 4, 1, 0, NULL,
 305, "ical", "ic", 3, 1, 0, NULL,
 308, "ful", LAMBDA, 2, -1, 0, NULL,
 309, "ness", LAMBDA, 3, -1, 0, NULL,
 000, NULL, NULL, 0, 0, 0, NULL,
 };

static RuleList step4_rules[] =
 {
 401, "al", LAMBDA, 1, -1, 1, NULL,
 402, "ance", LAMBDA, 3, -1, 1, NULL,
 403, "ence", LAMBDA, 3, -1, 1, NULL,
 405, "er", LAMBDA, 1, -1, 1, NULL,
 406, "ic", LAMBDA, 1, -1, 1, NULL,
 407, "able", LAMBDA, 3, -1, 1, NULL,
 408, "ible", LAMBDA, 3, -1, 1, NULL,
 409, "ant", LAMBDA, 2, -1, 1, NULL,
 410, "ement", LAMBDA, 4, -1, 1, NULL,
 411, "ment", LAMBDA, 3, -1, 1, NULL,
 412, "ent", LAMBDA, 2, -1, 1, NULL,
 423, "sion", "s", 3, 0, 1, NULL,
 424, "tion", "t", 3, 0, 1, NULL,
 415, "ou", LAMBDA, 1, -1, 1, NULL,

145

 416, "ism", LAMBDA, 2, -1, 1, NULL,
 417, "ate", LAMBDA, 2, -1, 1, NULL,
 418, "iti", LAMBDA, 2, -1, 1, NULL,
 419, "ous", LAMBDA, 2, -1, 1, NULL,
 420, "ive", LAMBDA, 2, -1, 1, NULL,
 421, "ize", LAMBDA, 2, -1, 1, NULL,
 000, NULL, NULL, 0, 0, 0, NULL,
 };

static RuleList step5a_rules[] =
 {
 501, "e", LAMBDA, 0, -1, 1, NULL,
 502, "e", LAMBDA, 0, -1, -1, RemoveAnE,
 000, NULL, NULL, 0, 0, 0, NULL,
 };

static RuleList step5b_rules[] =
 {
 503, "ll", "l", 1, 0, 1, NULL,
 000, NULL, NULL, 0, 0, 0, NULL,
 };

/***/
/******************** Private Function Declarations **********************/

/*FN***

 WordSize(word)

 Returns: int -- a weird count of word size in adjusted syllables

 Purpose: Count syllables in a special way: count the number
 vowel-consonant pairs in a word, disregarding initial
 consonants and final vowels. The letter "y" counts as a
 consonant at the beginning of a word and when it has a vowel
 in front of it; otherwise (when it follows a consonant) it
 is treated as a vowel. For example, the WordSize of "cat"
 is 1, of "any" is 1, of "amount" is 2, of "anything" is 3.

 Plan: Run a DFA to compute the word size

 Notes: The easiest and fastest way to compute this funny measure is
 with a finite state machine. The initial state 0 checks
 the first letter. If it is a vowel, then the machine changes
 to state 1, which is the "last letter was a vowel" state.
 If the first letter is a consonant or y, then it changes
 to state 2, the "last letter was a consonant state". In
 state 1, a y is treated as a consonant (since it follows
 a vowel), but in state 2, y is treated as a vowel (since
 it follows a consonant. The result counter is incremented
 on the transition from state 1 to state 2, since this
 transition only occurs after a vowel-consonant pair, which
 is what we are counting.
**/

static int
WordSize(word)
 char *word; /* in: word having its WordSize taken */
 {
 register int result; /* WordSize of the word */
 register int state; /* current state in machine */

 result = 0;
 state = 0;

 /* Run a DFA to compute the word size */
 while (EOS != *word)
 {
 switch (state)
 {
 case 0: state = (IsVowel(*word)) ? 1 : 2;
 break;
 case 1: state = (IsVowel(*word)) ? 1 : 2;
 if (2 == state) result++;
 break;
 case 2: state = (IsVowel(*word) || ('y' == *word)) ? 1 : 2;
 break;
 }
 word++;
 }

 return(result);

 } /* WordSize */

/*FN**

146

 ContainsVowel(word)

 Returns: int -- TRUE (1) if the word parameter contains a vowel,
 FALSE (0) otherwise.

 Purpose: Some of the rewrite rules apply only to a root containing
 a vowel, where a vowel is one of "aeiou" or y with a
 consonant in front of it.

 Plan: Obviously, under the definition of a vowel, a word contains
 a vowel iff either its first letter is one of "aeiou", or
 any of its other letters are "aeiouy". The plan is to
 test this condition.

 Notes: None
**/

static int
ContainsVowel(word)
 char *word; /* in: buffer with word checked */
 {

 if (EOS == *word)
 return(FALSE);
 else
 return(IsVowel(*word) || (NULL != strpbrk(word+1,"aeiouy")));

 } /* ContainsVowel */

/*FN**

 EndsWithCVC(word)

 Returns: int -- TRUE (1) if the current word ends with a
 consonant-vowel-consonant combination, and the second
 consonant is not w, x, or y, FALSE (0) otherwise.

 Purpose: Some of the rewrite rules apply only to a root with
 this characteristic.

 Plan: Look at the last three characters.

 Notes: None
**/

static int
EndsWithCVC(word)
 char *word; /* in: buffer with the word checked */
 {
 int length; /* for finding the last three characters */

 if ((length = strlen(word)) < 2)
 return(FALSE);
 else
 {
 end = word + length - 1;
 return((NULL == strchr("aeiouwxy",*end--)) /* consonant */
 && (NULL != strchr("aeiouy", *end--)) /* vowel */
 && (NULL == strchr("aeiou", *end))); /* consonant */
 }

 } /* EndsWithCVC */

/*FN**

 AddAnE(word)

 Returns: int -- TRUE (1) if the current word meets special conditions
 for adding an e.

 Purpose: Rule 122 applies only to a root with this characteristic.

 Plan: Check for size of 1 and a consonant-vowel-consonant ending.

 Notes: None
**/

static int
AddAnE(word)
 char *word;
 {

 return((1 == WordSize(word)) && EndsWithCVC(word));

 } /* AddAnE */

147

/*FN**

 RemoveAnE(word)

 Returns: int -- TRUE (1) if the current word meets special conditions
 for removing an e.

 Purpose: Rule 502 applies only to a root with this characteristic.

 Plan: Check for size of 1 and no consonant-vowel-consonant ending.

 Notes: None
**/

static int
RemoveAnE(word)
 char *word;
 {

 return((1 == WordSize(word)) && !EndsWithCVC(word));

 } /* RemoveAnE */

/*FN**

 ReplaceEnd(word, rule)

 Returns: int -- the id for the rule fired, 0 is none is fired

 Purpose: Apply a set of rules to replace the suffix of a word

 Plan: Loop through the rule set until a match meeting all conditions
 is found. If a rule fires, return its id, otherwise return 0.
 Connditions on the length of the root are checked as part of this
 function's processing because this check is so often made.

 Notes: This is the main routine driving the stemmer. It goes through
 a set of suffix replacement rules looking for a match on the
 current suffix. When it finds one, if the root of the word
 is long enough, and it meets whatever other conditions are
 required, then the suffix is replaced, and the function returns.
**/

static int
ReplaceEnd(word, rule)
 char *word; /* in/out: buffer with the stemmed word */
 RuleList *rule; /* in: data structure with replacement rules
 rule er en peker til en RuleList struct... */
 {
 register char *ending; /* set to start of possible stemmed suffix */
 char tmp_ch; /* save replaced character when testing */

 while (0 != rule->id)
 {
 ending = end - rule->old_offset;
 if (word <= ending)
 if (0 == strcmp(ending,rule->old_end))
 {
 tmp_ch = *ending;
 *ending = EOS;
 if (rule->min_root_size < WordSize(word))
 if (!rule->condition || (*rule->condition)(word))
 {
 (void)strcat(word, rule->new_end);
 end = ending + rule->new_offset;
 break;
 }
 *ending = tmp_ch;
 }
 rule++;
 }

 return(rule->id);

 } /* ReplaceEnd */

148

/***/
/********************* Public Function Declarations **********************/

/*FN***

 Stem(word)

 Returns: int -- FALSE (0) if the word contains non-alphabetic characters
 and hence is not stemmed, TRUE (1) otherwise

 Purpose: Stem a word

 Plan: Part 1: Check to ensure the word is all alphabetic
 Part 2: Run through the Porter algorithm
 Part 3: Return an indication of successful stemming

 Notes: This function implements the Porter stemming algorithm, with
 a few additions here and there. See:

 Porter, M.F., "An Algorithm For Suffix Stripping,"
 Program 14 (3), July 1980, pp. 130-137.

 Porter's algorithm is an ad hoc set of rewrite rules with
 various conditions on rule firing. The terminology of
 "step 1a" and so on, is taken directly from Porter's
 article, which unfortunately gives almost no justification
 for the various steps. Thus this function more or less
 faithfully refects the opaque presentation in the article.
 Changes from the article amount to a few additions to the
 rewrite rules; these are marked in the RuleList data
 structures with comments.
**/

int
Stem(word)
 char *word; /* in/out: the word stemmed */
 {
 int rule; /* which rule is fired in replacing an end */

 /* Part 1: Check to ensure the word is all alphabetic */
 for (end = word; *end != EOS; end++)
 if (!isalpha(*end)) return(FALSE);
 else *end = tolower(*end);
 end--;

 /* Part 2: Run through the Porter algorithm */
 (void)ReplaceEnd(word, step1a_rules); //dette er vel pekeren til arrayet?
 rule = ReplaceEnd(word, step1b_rules);
 if ((106 == rule) || (107 == rule))
 (void)ReplaceEnd(word, step1b1_rules);
 (void)ReplaceEnd(word, step1c_rules);

 (void)ReplaceEnd(word, step2_rules);

 (void)ReplaceEnd(word, step3_rules);

 (void)ReplaceEnd(word, step4_rules);

 (void)ReplaceEnd(word, step5a_rules);
 (void)ReplaceEnd(word, step5b_rules);

 /* Prøver med dette å sende inn verdiene til pekerne. Det blir selvsagt feil...
 Riktig slik det var med å sende inn pekeren. Må rette opp i funksjonen ReplaceEnd

 Før stod det (void)ReplaceEnd(word, step5b_rules);
 Dette har jeg endret til (void)ReplaceEnd(word, *step5b_rules);
 for alle reglene. Funksjonen forventer nemlig en peker inn, mens
 det som opprinnelig stod i koden var et vanlig arraynavn. */

 /* Part 3: Return an indication of successful stemming */
 return(TRUE);

 } /* Stem */

